Грунта – Грунт — это… Что такое Грунт?

Содержание

Грунт — Википедия

Техногенные грунты

Грунт — многокомпонентные динамичные системы (горные породы, почвы, осадки и техногенные образования), рассматриваемые как часть геологической среды и изучаемые в связи с инженерно-хозяйственной деятельностью человека[1]. Грунты используют в качестве оснований зданий и сооружений, материалов для строительства дорог, насыпей и плотин, среды для размещения подземных сооружений (тоннелей, трубопроводов, хранилищ) и др. Грунты изучаются в инженерной геологии и её разделе грунтоведении.

Классификация

Классы грунтов

По природе структурных связей между частицами они разделены на три класса:

  • скальные — с жёсткими кристаллизационными и цементационными связями;
  • дисперсные — с физическими, физико- химическими и механическими связями. Для дисперсных грунтов выделяются подклассы связанных и несвязанных грунтов.
  • мёрзлые — c дополнительными криогенными связями.

Типы грунтов

По генезису(происхождению) выделяются следующие типы грунтов:

Скальные грунты

Имеют две разновидности — скальные и полускальные. Чисто скальным грунтом называется грунт, минералы которого имеют структурные связи кристаллизационного типа. Полускальные грунты состоят из минералов, имеющих структурные связи цементационного типа. Условная граница между скальными и полускальными грунтами определяется значением предела прочности на одноосное сжатие Rc. У полускальных разновидностей Rc < 5 МПа.

Дисперсные грунты

Состоят из минеральных частиц разного размера, слабосвязанных друг с другом. Дисперсные грунты образуются при выветривании скальных грунтов с последующим переносом продуктов выветривания водным или эоловым путём и переотложением.

Мёрзлые грунты

Имеют отрицательную или нулевую температуру в течение многих лет, содержат включения льда и(или) цементирующий лёд, содержат дополнительные криогенные структурные связи.

Свойства грунтов

Физические свойства

Плотность грунта ρ, г/см3 — это отношение общей массы образца грунта при естественной влажности и строении, к занимаемому образцом объёму. Плотность грунта зависит от минералогического состава, влажности и пористости.

ρ=mV{\displaystyle \rho ={\frac {m}{V}}}

где:

ρ — плотность грунта, г/см3;

m — масса грунта с естественной влажностью и сложением, г;

V — объём, занимаемый грунтом, см3.

Плотность скелета грунта ρd[2] — плотность сухого грунта , г/см3, определяемая по формуле

ρd=ρ1+W{\displaystyle \rho _{d}={\frac {\rho }{1+W}}}

где

  • ρ — плотность грунта, г/см3;
  • W — влажность грунта, д. ед.

Коэффициент пористости е определяется по формуле:

e=ρs−ρdρd{\displaystyle e={\frac {\rho _{s}-\rho _{d}}{\rho _{d}}}}

где

  • ρs — плотность частиц грунта, г/см3;
  • ρd — плотность сухого грунта, г/см3.

Предел прочности грунта на одноосное сжатие R

c, МПа — отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения.

Водно-физические свойства

Влажность грунта, W % — массовое(весовое) W или объёмное Wn относительное содержание воды в порах грунта. Объёмная влажность Wn изменяется от 0 до 100 %.

ρ=mV{\displaystyle \rho ={\frac {m}{V}}}

Коэффициент водонасыщения Sr, д. ед. — степень заполнения объёма пор водой. Определяется по формуле:

Sr=Wρseρw{\displaystyle S_{r}={\frac {W\rho _{s}}{e\rho _{w}}}}

где

  • W — природная влажность грунта, д. ед.;
  • е — коэффициент пористости;
  • ρs — плотность частиц грунта, г/см3;
  • ρw — плотность воды, принимаемая равной 1 г/см3.

Число пластичности Ip — разность влажностей, соответствующая двум состояниям грунта: на границе текучести WL и на границе раскатывания Wp.

Ip=WL−Wp{\displaystyle I_{p}=W_{L}-W_{p}}

WL и Wp определяют по ГОСТ 5180-84.

Количественные характеристики гранулометрического состава

Степень неоднородности гранулометрического состава Cu — показатель неоднородности гранулометрического состава. Определяется по формуле

Cu=d60d10{\displaystyle C_{u}={\frac {d_{60}}{d_{10}}}}, (А.3)

где d60, d10 — диаметры частиц, мм, меньше которых в грунте содержится соответственно 60 и 10 % (по массе) частиц.

Кэффициент выветрелости Кwr, д. ед. — отношение плотности выветрелого грунта к плотности монолитного грунта.

Коэффициент выветрелости крупнообломочных грунтов Кwr, д. ед., определяется по формуле

Kwr=K1−K0K1{\displaystyle K_{wr}={\frac {K_{1}-K_{0}}{K_{1}}}}

где К1 — отношение массы частиц размером менее 2 мм к массе частиц размером более 2 мм после испытания на истирание в полочном барабане;
К0 — то же, в природном состоянии.

Коэффициент истираемости крупнообломочных грунтов Кfr, д. ед., определяется по формуле:

Kfr=q1q0{\displaystyle K_{fr}={\frac {q_{1}}{q_{0}}}}

где q1

 — масса частиц размером менее 2 мм после испытания крупнообломочных фракций грунта (частицы размером более 2 мм) на истирание в полочном барабане;
q0 — начальная масса пробы крупнообломочных фракций (до испытания на истирание).

Коэффициент размягчаемости в воде Кsof, д. ед. — отношение пределов прочности грунта на одноосное сжатие в водонасыщенном и в воздушно-сухом состоянии.

Коэффициент сжимаемости мёрзлого грунта δf — относительная деформация мёрзлого грунта под нагрузкой.

Льдистость грунта за счёт видимых ледяных включений ii, д. ед. — отношение содержащегося в нём объёма видимых ледяных включений к объёму мёрзлого грунта. Определяется по формуле:

ii=ρs(Wtot−Wm)ρi+ρs(Wtot−Ww){\displaystyle i_{i}={\frac {\rho _{s}(W_{tot}-W_{m})}{\rho _{i}+\rho _{s}(W_{tot}-W_{w})}}}
  • ρs — плотность мёрзлого грунта, г/см3;
  • ρi — плотность льда, принимаемая равной 0,9 г/см3;
  • Wtot — суммарная влажность мёрзлого грунта, д. ед.;
  • Wm — влажность мёрзлого грунта, расположенного между ледяными включениями, д. ед.
  • Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.

Относительная деформация набухания без нагрузки ε

sw, д. ед. — отношение увеличения высоты образца грунта после свободного набухания в условиях невозможности бокового расширения к начальной высоте образца природной влажности. Определяется по ГОСТ 24143-80.

Относительная деформация просадочности εs, д. ед. — отношение разности высот образцов, соответственно, природной влажности и после его полного водонасыщения при определённом давлении к высоте образца природной влажности. Определяется по ГОСТ 23161-78.

Относительное содержание органического вещества Ir, д. ед. — отношение массы сухих растительных остатков к массе абсолютно сухого грунта.

Показатель текучести IL

 — отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip.

Степень водопроницаемости — характеристика, отражающая способность грунтов пропускать через себя воду и количественно выражающаяся в коэффициенте фильтрации Кф, м/сут. Определяется по ГОСТ 25584-90.

Степень заполнения объёма пор мёрзлого грунта льдом и незамёрзшей водой Sr, д. ед., определяется по формуле:

Sr=(1,1Wic+Ww)ρsefρw{\displaystyle S_{r}={\frac {(1,1W_{ic}+W_{w})\rho _{s}}{e_{f}\rho _{w}}}}

где Wic — влажность мёрзлого грунта за счёт порового льда, цементирующего минеральные частицы (лёд-цемент), д. ед.;

Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.;
ρs — плотность частиц грунта, г/см3;
еf — коэффициент пористости мёрзлого грунта;
ρw — плотность воды, принимаемая равной 1 г/см3.

Степень засолённости — характеристика, определяющая количество водорастворимых солей в грунте Dsal, %.

Степень зольности торфа Dds, д. ед. — характеристика, выражающаяся отношением массы минеральной части грунта ко всей его массе в абсолютно сухом состоянии. Определяется по ГОСТ 11306-83*.

Степень морозной пучинистости — характеристика, отражающая способность грунта к морозному пучению, выражается относительной деформацией морозного пучения ε

fh, д. ед. (доли единицы), которая определяется по формуле:

εfh=ho,f−hoho{\displaystyle \varepsilon _{fh}={\frac {h_{o,f}-h_{o}}{h_{o}}}}

где

ho, f — высота образца мёрзлого грунта, см;

ho — начальная высота образца талого грунта до замерзания, см.

Степень плотности песков ID определяется по формуле

ID=emax−eemax−emin{\displaystyle I_{D}={\frac {e_{max}-e}{e_{max}-e_{min}}}}, (A.6)

где е — коэффициент пористости при естественном или искусственном сложении;
emax — коэффициент пористости в предельно-плотном сложении;

emin — коэффициент пористости в предельно-рыхлом сложении.

Степень разложения торфа Ddp, д. ед. — характеристика, выражающаяся отношением массы бесструктурной (полностью разложившейся) части, включающей гуминовые кислоты и мелкие частицы негумицированных остатков растений, к общей массе торфа. Определяется по ГОСТ 10650-72.

Степень растворимости в воде — характеристика, отражающая способность грунтов растворяться в воде и выражающаяся в количестве воднорастворимых солей, qsr, г/л.

Структура грунта — пространственная организация компонентов грунта, характеризующаяся совокупностью морфологических (размер, форма частиц, их количественное соотношение), геометрических (пространственная композиция структурных элементов) и энергетических признаков (тип структурных связей и общая энергия структуры) и определяющаяся составом, количественным соотношением и взаимодействием компонентов грунта.

Суммарная льдистость мёрзлого грунта itot, д. ед. — отношение содержащегося в нём объёма льда к объёму мёрзлого грунта. Определяется по формуле:

itot=ii+ic=ρ⋅iρi=ρf(Wtot−Ww)ρi(1+Wtot){\displaystyle i_{tot}=i_{i}+i_{c}={\frac {\rho \cdot i}{\rho _{i}}}={\frac {\rho _{f}(W_{tot}-W_{w})}{\rho _{i}(1+W_{tot})}}}, (A.10)

Состав грунта вещественный — категория, характеризующая химико-минеральный состав твёрдых, жидких и газовых компонентов.

Текстура грунта — пространственное расположение слагающих грунт элементов (слоистость, трещиноватость и др.).

Гранулометрический состав — количественное соотношение частиц различной крупности в дисперсных грунтах. Определяется по ГОСТ 12536-79.

Приборы для исследования физико-химических свойств грунта

Ссылки

Примечания

wikipedia.green

Грунт — Википедия. Что такое Грунт

Техногенные грунты

Грунт — многокомпонентные динамичные системы (горные породы, почвы, осадки и техногенные образования), рассматриваемые как часть геологической среды и изучаемые в связи с инженерно-хозяйственной деятельностью человека[1]. Грунты используют в качестве оснований зданий и сооружений, материалов для строительства дорог, насыпей и плотин, среды для размещения подземных сооружений (тоннелей, трубопроводов, хранилищ) и др. Грунты изучаются в инженерной геологии и её разделе грунтоведении.

Классификация

Классы грунтов

По природе структурных связей между частицами они разделены на три класса:

  • скальные — с жёсткими кристаллизационными и цементационными связями;
  • дисперсные — с физическими, физико- химическими и механическими связями. Для дисперсных грунтов выделяются подклассы связанных и несвязанных грунтов.
  • мёрзлые — c дополнительными криогенными связями.

Типы грунтов

По генезису(происхождению) выделяются следующие типы грунтов:

Скальные грунты

Имеют две разновидности — скальные и полускальные. Чисто скальным грунтом называется грунт, минералы которого имеют структурные связи кристаллизационного типа. Полускальные грунты состоят из минералов, имеющих структурные связи цементационного типа. Условная граница между скальными и полускальными грунтами определяется значением предела прочности на одноосное сжатие Rc. У полускальных разновидностей Rc < 5 МПа.

Дисперсные грунты

Состоят из минеральных частиц разного размера, слабосвязанных друг с другом. Дисперсные грунты образуются при выветривании скальных грунтов с последующим переносом продуктов выветривания водным или эоловым путём и переотложением.

Мёрзлые грунты

Имеют отрицательную или нулевую температуру в течение многих лет, содержат включения льда и(или) цементирующий лёд, содержат дополнительные криогенные структурные связи.

Свойства грунтов

Физические свойства

Плотность грунта ρ, г/см3 — это отношение общей массы образца грунта при естественной влажности и строении, к занимаемому образцом объёму. Плотность грунта зависит от минералогического состава, влажности и пористости.

ρ=mV{\displaystyle \rho ={\frac {m}{V}}}

где:

ρ — плотность грунта, г/см3;

m — масса грунта с естественной влажностью и сложением, г;

V — объём, занимаемый грунтом, см3.

Плотность скелета грунта ρd[2] — плотность сухого грунта , г/см3, определяемая по формуле

ρd=ρ1+W{\displaystyle \rho _{d}={\frac {\rho }{1+W}}}

где

  • ρ — плотность грунта, г/см3;
  • W — влажность грунта, д. ед.

Коэффициент пористости е определяется по формуле:

e=ρs−ρdρd{\displaystyle e={\frac {\rho _{s}-\rho _{d}}{\rho _{d}}}}

где

  • ρs — плотность частиц грунта, г/см3;
  • ρd — плотность сухого грунта, г/см3.

Предел прочности грунта на одноосное сжатие Rc, МПа — отношение нагрузки, при которой происходит разрушение образца, к площади первоначального поперечного сечения.

Водно-физические свойства

Влажность грунта, W % — массовое(весовое) W или объёмное Wn относительное содержание воды в порах грунта. Объёмная влажность Wn изменяется от 0 до 100 %.

ρ=mV{\displaystyle \rho ={\frac {m}{V}}}

Коэффициент водонасыщения Sr, д. ед. — степень заполнения объёма пор водой. Определяется по формуле:

Sr=Wρseρw{\displaystyle S_{r}={\frac {W\rho _{s}}{e\rho _{w}}}}

где

  • W — природная влажность грунта, д. ед.;
  • е — коэффициент пористости;
  • ρs — плотность частиц грунта, г/см3;
  • ρw — плотность воды, принимаемая равной 1 г/см3.

Число пластичности Ip — разность влажностей, соответствующая двум состояниям грунта: на границе текучести WL и на границе раскатывания Wp.

Ip=WL−Wp{\displaystyle I_{p}=W_{L}-W_{p}}

WL и Wp определяют по ГОСТ 5180-84.

Количественные характеристики гранулометрического состава

Степень неоднородности гранулометрического состава Cu — показатель неоднородности гранулометрического состава. Определяется по формуле

Cu=d60d10{\displaystyle C_{u}={\frac {d_{60}}{d_{10}}}}, (А.3)

где d60, d10 — диаметры частиц, мм, меньше которых в грунте содержится соответственно 60 и 10 % (по массе) частиц.

Кэффициент выветрелости Кwr, д. ед. — отношение плотности выветрелого грунта к плотности монолитного грунта.

Коэффициент выветрелости крупнообломочных грунтов Кwr, д. ед., определяется по формуле

Kwr=K1−K0K1{\displaystyle K_{wr}={\frac {K_{1}-K_{0}}{K_{1}}}}

где К1 — отношение массы частиц размером менее 2 мм к массе частиц размером более 2 мм после испытания на истирание в полочном барабане;
К0 — то же, в природном состоянии.

Коэффициент истираемости крупнообломочных грунтов Кfr, д. ед., определяется по формуле:

Kfr=q1q0{\displaystyle K_{fr}={\frac {q_{1}}{q_{0}}}}

где q1 — масса частиц размером менее 2 мм после испытания крупнообломочных фракций грунта (частицы размером более 2 мм) на истирание в полочном барабане;
q0 — начальная масса пробы крупнообломочных фракций (до испытания на истирание).

Коэффициент размягчаемости в воде Кsof, д. ед. — отношение пределов прочности грунта на одноосное сжатие в водонасыщенном и в воздушно-сухом состоянии.

Коэффициент сжимаемости мёрзлого грунта δf — относительная деформация мёрзлого грунта под нагрузкой.

Льдистость грунта за счёт видимых ледяных включений ii, д. ед. — отношение содержащегося в нём объёма видимых ледяных включений к объёму мёрзлого грунта. Определяется по формуле:

ii=ρs(Wtot−Wm)ρi+ρs(Wtot−Ww){\displaystyle i_{i}={\frac {\rho _{s}(W_{tot}-W_{m})}{\rho _{i}+\rho _{s}(W_{tot}-W_{w})}}}
  • ρs — плотность мёрзлого грунта, г/см3;
  • ρi — плотность льда, принимаемая равной 0,9 г/см3;
  • Wtot — суммарная влажность мёрзлого грунта, д. ед.;
  • Wm — влажность мёрзлого грунта, расположенного между ледяными включениями, д. ед.
  • Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.

Относительная деформация набухания без нагрузки εsw, д. ед. — отношение увеличения высоты образца грунта после свободного набухания в условиях невозможности бокового расширения к начальной высоте образца природной влажности. Определяется по ГОСТ 24143-80.

Относительная деформация просадочности εs, д. ед. — отношение разности высот образцов, соответственно, природной влажности и после его полного водонасыщения при определённом давлении к высоте образца природной влажности. Определяется по ГОСТ 23161-78.

Относительное содержание органического вещества Ir, д. ед. — отношение массы сухих растительных остатков к массе абсолютно сухого грунта.

Показатель текучести IL — отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания Wp, к числу пластичности Ip.

Степень водопроницаемости — характеристика, отражающая способность грунтов пропускать через себя воду и количественно выражающаяся в коэффициенте фильтрации Кф, м/сут. Определяется по ГОСТ 25584-90.

Степень заполнения объёма пор мёрзлого грунта льдом и незамёрзшей водой Sr, д. ед., определяется по формуле:

Sr=(1,1Wic+Ww)ρsefρw{\displaystyle S_{r}={\frac {(1,1W_{ic}+W_{w})\rho _{s}}{e_{f}\rho _{w}}}}

где Wic — влажность мёрзлого грунта за счёт порового льда, цементирующего минеральные частицы (лёд-цемент), д. ед.;
Ww — влажность мёрзлого грунта за счёт содержащейся в нём при данной отрицательной температуре незамёрзшей воды, д. ед.;
ρs — плотность частиц грунта, г/см3;
еf — коэффициент пористости мёрзлого грунта;
ρw — плотность воды, принимаемая равной 1 г/см3.

Степень засолённости — характеристика, определяющая количество водорастворимых солей в грунте Dsal, %.

Степень зольности торфа Dds, д. ед. — характеристика, выражающаяся отношением массы минеральной части грунта ко всей его массе в абсолютно сухом состоянии. Определяется по ГОСТ 11306-83*.

Степень морозной пучинистости — характеристика, отражающая способность грунта к морозному пучению, выражается относительной деформацией морозного пучения εfh, д. ед. (доли единицы), которая определяется по формуле:

εfh=ho,f−hoho{\displaystyle \varepsilon _{fh}={\frac {h_{o,f}-h_{o}}{h_{o}}}}

где

ho, f — высота образца мёрзлого грунта, см;

ho — начальная высота образца талого грунта до замерзания, см.

Степень плотности песков ID определяется по формуле

ID=emax−eemax−emin{\displaystyle I_{D}={\frac {e_{max}-e}{e_{max}-e_{min}}}}, (A.6)

где е — коэффициент пористости при естественном или искусственном сложении;
emax — коэффициент пористости в предельно-плотном сложении;
emin — коэффициент пористости в предельно-рыхлом сложении.

Степень разложения торфа Ddp, д. ед. — характеристика, выражающаяся отношением массы бесструктурной (полностью разложившейся) части, включающей гуминовые кислоты и мелкие частицы негумицированных остатков растений, к общей массе торфа. Определяется по ГОСТ 10650-72.

Степень растворимости в воде — характеристика, отражающая способность грунтов растворяться в воде и выражающаяся в количестве воднорастворимых солей, qsr, г/л.

Структура грунта — пространственная организация компонентов грунта, характеризующаяся совокупностью морфологических (размер, форма частиц, их количественное соотношение), геометрических (пространственная композиция структурных элементов) и энергетических признаков (тип структурных связей и общая энергия структуры) и определяющаяся составом, количественным соотношением и взаимодействием компонентов грунта.

Суммарная льдистость мёрзлого грунта itot, д. ед. — отношение содержащегося в нём объёма льда к объёму мёрзлого грунта. Определяется по формуле:

itot=ii+ic=ρ⋅iρi=ρf(Wtot−Ww)ρi(1+Wtot){\displaystyle i_{tot}=i_{i}+i_{c}={\frac {\rho \cdot i}{\rho _{i}}}={\frac {\rho _{f}(W_{tot}-W_{w})}{\rho _{i}(1+W_{tot})}}}, (A.10)

Состав грунта вещественный — категория, характеризующая химико-минеральный состав твёрдых, жидких и газовых компонентов.

Текстура грунта — пространственное расположение слагающих грунт элементов (слоистость, трещиноватость и др.).

Гранулометрический состав — количественное соотношение частиц различной крупности в дисперсных грунтах. Определяется по ГОСТ 12536-79.

Приборы для исследования физико-химических свойств грунта

Ссылки

Примечания

wiki.sc

Как самостоятельно определить вид грунта

Грунт представлен неоднородными частицами, которые обладают разными несущими способностями, поэтому, чтобы заложить фундамент, нужно правильно определить тип грунта.

В этой статье рассказывается, как самостоятельно определить вид грунта.

Формирование грунта проходит в течение десятков и сотен лет. Чтобы построить дом, необходимо обладать минимальными знаниями о залегающих слоях. Каждый вид грунта имеет много разновидностей и обладает широким диапазоном физических свойств.

Скальные, крупнозерновые песчаные и хрящевые грунты обладают хорошей несущей способностью, не подвергаются сильной усадке и действию пучинистых сил.

Глина, суглинки и торф сильно сжимаются, разрушают основания и подвергают несущие конструкции перекосу.

Характеристики грунта можно улучшить искусственными способами и построить здание на любой почве.

Типы грунта

Скальный грунт – состоит из спаянных и сцементированных пород. Скальное основание трудно разрабатывать и проводить инженерно-геологические изыскания. Скалы характеризуются высокой плотностью и не подвергаются воздействию грунтовых вод.

Данный грунт не размывается и не деформируется. Рытье траншей в таком грунте очень затруднительно, поэтому фундамент закладывают поверх скалы.

Хрящевой грунт состоит из гравия – природного или искусственного происхождения. Гравий обладает гладкой поверхностью и напоминает зерна. Размер камушков гравия равен 20 – 70 мм.

Хрящевой грунт обладает высокой несущей способностью. В зимнее время грунт незначительно промерзает. Закладку фундамента осуществляют на глубине 50 – 70 см.

Глинистый грунт состоит из мелких чешуйчатых частиц и содержит в себе большое количество влаги. При промерзании глинистый грунт сжимается. Несущие характеристики грунта зависят от количества воды, содержащейся в глине. Зимой глина промерзает на глубину 1,5 метра. Закладку фундамента на глине стоит производить после устройства песчаной подушки.

Суглинки и супеси содержат в себе от 10 до 30 процентов глины, а остальную часть занимает песок.

Этот грунт пластичен, содержит в себе много воды и подвержен пучению. Под действием фундамента супеси и суглинки сильно осаживаются.

Торфяные почвы располагаются на осушенных болотах и являются самыми неустойчивыми. Из-за высокой степени насыщения торфа водой, строительство без частичной замены грунта невозможна.

Под нагрузкой фундамента торф сжимается и затягивает фундамент.

Способы определения типа грунта

Различают такие способы:

  • инженерно – технологические исследования;
  • лабораторные исследования;
  • изготовление шурфов для ручного определения.

Также существуют визуальные способы определения грунта:

  1. Растирание на ладони.
  2. Определение сухого и влажного состояния.
  3. Рассмотрение под лупой.
  4. Скатывание в шнур.

Самостоятельно определить тип грунта можно следующим способом:

  1. На почве бурят шурфы глубиной 2,5 метра. Через каждые пол метра проводят забор почвы в отдельные контейнеры и плотно закрывают, чтобы влага не проникла внутрь.После производства заборов, каждый тип почвы смачивают водой и скатывают жгут. Полученный жгут скручивают в кольцо.Если кольцо осталось целым, то грунт состоит из глины. Кольцо раскрошилось на мелкие части – грунт состоит из супеси. Суглинок рассыплется на несколько крупных частей.
  2. Определение коэффициента пористости песка. В емкость засыпают грунт и замеряют объем. Далее проводят утрамбовку и повторно замеряют объем песка. Путем соотношения уплотненного и неуплотненного грунта определяют коэффициент пористости. Если пористость грунта высокая, то он обладает низкими несущими способностями.
  3. Определения грунта по оседающим частицам. Установить тип грунта можно с помощью определения скорости оседания частиц в емкости. Для данного способа используют прозрачную емкость, линейку, листок бумаги, средство для мытья посуды и образцы грунта.
  • Раскладываем образцы на бумаге для просушки и удаления из них камней, органических вкраплений и прочего мусора. После просушки измельчаем образцы.
  • Опрыскиваем образцы водой из пульверизатора.
  • Наполняем высокую прозрачную емкость на 1/4 образцами.
  • Заполняем емкость водой до полного объема.
  • Добавляем 1 чайную ложку средства для мытья посуды. 

    Важно. Нужно добавить именно средство для мытья посуды, а не мыло или шампунь.

  • Плотно закрыть емкость и интенсивно встряхиваем ее в течение 10 минут. Такой процесс приведет к расслоению образца грунта на составляющие компоненты.
  • Компоненты, входящие в состав образца, будут оседать в соответствии с их размером, поэтому через 1 минуту после постановки емкости, следует отметить уровень осевшего песка.
  • Через 2 часа следует отметить уровень выпавшего ила.
  • После того, как вода в емкости станет прозрачной, следует отметить уровень глины, выпавшей в емкости. Следует отметить, что необходимо дождаться полной прозрачности воды в емкости.
  • Измерив толщину каждого слоя, необходимо зафиксировать полученные величины на листе бумаги.
  • Рассчитываем процентное отношение каждого вида осадка в образце.
  • После этого, воспользовавшись рисунком, определяем вид грунта по процентному отношению его компонентов.

Возьмите процент песка в качестве отправной точки в нижней части диаграммы и проведите линию вверх и влево. Затем возьмите процент глины и проведите линию горизонтально. Возьмите процент ила и проведите линию вниз. Все должны пересечься в одной точке, по которой можно судить о типе грунта.

 Исследование почвы вручную

Возьмите горсть почвы в руки, увлажните и разотрите между пальцами. Далее:

  • Сомните в шар. Глина с примесью песка не будет держать форму шара, будет рассыпаться. Гладкий и пластичный шар говорит о том, что грунт полностью состоит из глины. Шар, который легко скатывается, но лопается, состоит из глины с малым количеством песка.
  • Если почва не скатывается в форму, а рассыпается и не оставляет следов на ладони – перед вами песок. Грунт, который застревает в складках пальцев, состоит из ила.

Самостоятельно определить тип грунта несложно. Но лучше все вопросы по исследованию грунта поручить специалистам. Это требует материальных затрат, но оправдается при возведении будущего фундамента.

fundament-help.ru

ГРУНТ — это… Что такое ГРУНТ?

  • Грунт — получить на Академике рабочий купон на скидку Сити Тюнинг или выгодно грунт купить с бесплатной доставкой на распродаже в Сити Тюнинг

  • грунт — грунт/ …   Морфемно-орфографический словарь

  • грунт — ГРУНТ, ГРУНТОВЩИК         Грунт – специальная смесь, состоящая из чистой речной глины и сажи, растертых с олифой на каменной плите гладким твердым камнем (курантом).     Грунтовщик – мастер, наносивший грунт на изделие. • • •     « … Грунт –… …   Словарь живописи и реставрации

  • грунт — сущ., м., употр. сравн. часто Морфология: (нет) чего? грунта и грунту, чему? грунту, (вижу) что? грунт, чем? грунтом, о чём? о грунте и в грунту; мн. что? грунты, (нет) чего? грунтов, чему? грунтам, (вижу) что? грунты, чем? грунтами, о чём? о… …   Толковый словарь Дмитриева

  • ГРУНТ — (нем. Grund основание). 1) почва; дно реки. 2) в живописи и малярстве фон, поле, первая основная краска. 3) фон, основной цвет материи. 4) то же, что фон. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГРУНТ нем.… …   Словарь иностранных слов русского языка

  • грунт — См …   Словарь синонимов

  • Грунт — условное прикладное наименование любой г. п., рассматриваемой с инженерно строительной точки зрения. Различают грунты: скальные, полускальные, мягкие, связные, рыхлые несвязные, особого состава, состояния и свойств. Геологический словарь: в 2 х… …   Геологическая энциклопедия

  • ГРУНТ — ГРУНТ, а ( у), муж. 1. То же, что почва (в 1 знач.). Песчаный г. Пересадить цветок из горшка в г. 2. Почва, образующая дно водоёма, водного потока; твёрдое дно. Илистый г. пруда. Сваи вбиваются в г. 3. В живописи, малярных работах: промежуточный… …   Толковый словарь Ожегова

  • Грунт —         (от нем. Grund основа), промежуточный слой, нанесённый на поверхность стены, доски, холста, картона и предназначенный обеспечить прочную связь основы и красочного слоя, создать желаемые цветовой фон и фактуру. Состоит из порошкообразного… …   Художественная энциклопедия

  • грунт — а, предл. в (на) грунте; мн. грунты, ов и грунты, ов; м. [нем. Grund] 1. Земля, почва. Твёрдый, рыхлый, зыбкий г. Мёрзлый г. Глинистые, песчаные грунты. Размыв грунта. Лунный г. (зернистый поверхностный слой Луны обломочно пылевого происхождения) …   Энциклопедический словарь

  • Грунт — – прилегающий к металлу слой покрытия, обеспечивающий прочность сцепления с металлом и улучшающий защитные свойства покрытия. [ГОСТ 5272 68] Грунт – любая горная порода, залегающая преимущественно в пределах зоны выветривания и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • dic.academic.ru

    грунт — это… Что такое грунт?

  • Грунт — получить на Академике рабочий купон на скидку Сити Тюнинг или выгодно грунт купить с бесплатной доставкой на распродаже в Сити Тюнинг

  • грунт — грунт/ …   Морфемно-орфографический словарь

  • грунт — ГРУНТ, ГРУНТОВЩИК         Грунт – специальная смесь, состоящая из чистой речной глины и сажи, растертых с олифой на каменной плите гладким твердым камнем (курантом).     Грунтовщик – мастер, наносивший грунт на изделие. • • •     « … Грунт –… …   Словарь живописи и реставрации

  • ГРУНТ — (нем. Grund основание). 1) почва; дно реки. 2) в живописи и малярстве фон, поле, первая основная краска. 3) фон, основной цвет материи. 4) то же, что фон. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГРУНТ нем.… …   Словарь иностранных слов русского языка

  • ГРУНТ — ГРУНТ, грунта, муж. (нем. Grund). 1. Почва, земля. Глинистый грунт. || Твердая почва на некоторой глубине, твердое дно, материк. Сваи вбивают в грунт. 2. Первый слой краски, подмазка, загрунтовка, которой покрывают холст или дерево для того,… …   Толковый словарь Ушакова

  • грунт — См …   Словарь синонимов

  • Грунт — условное прикладное наименование любой г. п., рассматриваемой с инженерно строительной точки зрения. Различают грунты: скальные, полускальные, мягкие, связные, рыхлые несвязные, особого состава, состояния и свойств. Геологический словарь: в 2 х… …   Геологическая энциклопедия

  • ГРУНТ — ГРУНТ, а ( у), муж. 1. То же, что почва (в 1 знач.). Песчаный г. Пересадить цветок из горшка в г. 2. Почва, образующая дно водоёма, водного потока; твёрдое дно. Илистый г. пруда. Сваи вбиваются в г. 3. В живописи, малярных работах: промежуточный… …   Толковый словарь Ожегова

  • Грунт —         (от нем. Grund основа), промежуточный слой, нанесённый на поверхность стены, доски, холста, картона и предназначенный обеспечить прочную связь основы и красочного слоя, создать желаемые цветовой фон и фактуру. Состоит из порошкообразного… …   Художественная энциклопедия

  • грунт — а, предл. в (на) грунте; мн. грунты, ов и грунты, ов; м. [нем. Grund] 1. Земля, почва. Твёрдый, рыхлый, зыбкий г. Мёрзлый г. Глинистые, песчаные грунты. Размыв грунта. Лунный г. (зернистый поверхностный слой Луны обломочно пылевого происхождения) …   Энциклопедический словарь

  • Грунт — – прилегающий к металлу слой покрытия, обеспечивающий прочность сцепления с металлом и улучшающий защитные свойства покрытия. [ГОСТ 5272 68] Грунт – любая горная порода, залегающая преимущественно в пределах зоны выветривания и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • dic.academic.ru

    Грунт для растений: виды грунта, выбор подходящей почвы

    Занимаясь выращиванием цветов дома и на домашних участках, садовод воссоздает условия, максимально приближенные к естественной среде обитания растения. Сложно найти однозначный ответ, какой грунт лучше всего, покупной или приготовленный по собственному рецепту, лучше, когда есть торф в грунте или такой элемент негативно влияет на рост растений, почему одни культуры хорошо растут на определённой почве, а другие на ней же плохо уживаются? В этой статье постараемся разобраться, какие виды грунтов для растений бывают, и научимся правильно подбирать их для своих цветов и растений.

    Виды грунтов, преимущества и недостатки

    Для чего вообще требуется грунт? Он помогает растениям перемещать к корням питательные элементы и воздух. Основные виды грунтов, встречаемые в нашем регионе: песчаная, супесчаная, черноземная, болотистая, глинистая, суглинистая, а также известковая. Каждый вид имеет ряд достоинств и недостатков. Кроме того, редко встретишь чистый состав, зачастую почвы смешиваются, но с превосходством в значительной степени одного из видов. Разберём каждый тип грунта по отдельности, рассмотрим их преимущества и недостатки, а также выявим возможные проблемы каждого грунта, и способы улучшения почвенных участков.

    Песчаная почва

    Песчаная почва очень легко узнаваема, так как она сыпучая и запросто пропускает через себя воду, в руках горсть такой земли легко рассыпается. Все ее свойства одновременно и преимущества, и недостатки. Она быстро нагревается, и также быстро остывает. Очень слабо удерживает влагу, в связи с чем такая почва в скором времени остается без воды, а минеральные вещества, предназначенные для растений, стремительно смываются. Малопригодна для выращивания большинства культур без добавления других почв. Чтобы поднять эффективность такого типа земли, требуется регулярно улучшать ее уплотняющие свойства. Частые добавления торфа и перегноя, применение сидератов, хорошее мульчирование уже через несколько лет обеспечивают видимый эффект.

    Супесчаная почва

    Супесчаная почва напоминает по своим признакам песчаную, она схожа с песчаными почвами, но в ней уже содержится достаточное количество глины, чтобы она обладала уплотняющим эффектом и тем самым задерживала в себе минералы и разные полезные вещества. Ее свойства помогают ей быстро согреваться и уже на более долгий срок сохранять воду и тепло. В руках горсть такой земли слипается, но не держит форму. Произрастать на таком грунте может все, что угодно. Это хороший вариант для дачных участков, и даже комнатного садоводства. Но и здесь не будет лишним вносить удобрения.

    Глинистая почва

    Грунт в соотношении 20% песка и 80% глины называют глинистым. Почва глинистого типа также просто определяется, достаточно взять горсть земли в руки, немного добавив воды: если она принимает форму, легко прилипая к рукам, сомнений не останется. По своим плодородным свойствам она плохо впитывает воду, медленно прогревается, через нее практически не проходит воздух. Выращивать культуры в таком грунте является проблематичным. Но если заняться преобразованием земли, выровнять рельеф, периодически добавлять речной песок, известковые примеси, посадить зеленые удобрения сидераты, а также внести органические добавки и обогатить черноземом, она тоже сможет плодоносить. 

    Суглинистая почва

    Неплохой вариант для дачных участков – суглинистая почва. Преимуществом грунта является хорошая проводимость воды и воздуха, а также распределение их в слоях почвы, удержание тепла.В руках такая земля собирается в форму, но при попытке изменить форму, она разваливается. Такой грунт не требует особого ухода или удобрений, так как содержит много элементов в себе, за исключением известковых примесей. Мульчирование грунта поможет длительно сохранять влагу под землей, а регулярное рыхление грунта обеспечит максимальную проходимость воздуху и быстрый прогрев весной.

    Черноземная почва

    Содержит в своем составе от 6-9% основного органического вещества почвы, гумуса. Остальные виды грунтов имеют гумуса в своем содержании не более 4,5%. Чем больше его содержание, тем чернее грунт, откуда и берет свое название и отличительную особенность черноземная почва. Отлично поглощает и удерживает воду. Является лучшим видом грунта для прорастания различных растений, что на дачных участках, что в комнатных условиях. Недостаток чернозема – только его высокая цена.

    Известковая почва

    Следующий тип грунта имеет в себе регулярный недостаток полезных веществ. Известковый грунт имеет светло-коричневый цвет, легко и быстро греется, а также быстро пересыхает, образуя на поверхности твердую корку, мешающую свободному проходу к корням воздуха. А полезные вещества уходят из верхних слоев грунта по причине быстрой проходимости воды через нее, что отрицательно влияет на плодородие. Плохо позволяет растениям брать с нее некоторые вещества. Если на таком грунте попытаться выращивать прихотливые культуры, листья будут желтеть, а рост останавливаться. Реанимировать такой грунт нужно еще постараться, проблемы известковой почвы плохо поддаются коррекции. Необходимо использование суглинистых почв вместе с органическими и калийными удобрениями. Также на такой земле рекомендуется сеять сидераты и применять мульчирующий слой, так как он является наиболее эффективным методом сохранения влаги в известковых почвах.

    Торфяная почва

    Торфяную, или по-другому болотистую, почву, сложно назвать продуктивной, воду она впитывает также быстро, как и отдает, сложно греется, и зачастую имеет повышенный коэффициент кислотности, питательные вещества в них плохо доступны для растений. Отличительной особенностью такого грунта является эффективная задержка минералов в себе. Повысить плодородие грунта можно за счет добавления песка, глубокого взрыхления, а также на особо закисленных областях вносить известковые примеси в землю. Можно создать дренажные системы или канавы, которые будут отводить воду.

    Как выбрать подходящий грунт

    А теперь перейдём к рассмотрению самого главного вопроса, как же выбрать правильный грунт. Решающую роль играют растения. Если у вас целый сад растений, то универсальный грунт будет более или менее подходящим выбором. Но помните, что подбор почвы индивидуально, эффективнее сказывается на росте и здоровье культур.

    Почва для комнатных растений

    Разберем на примере популярных видов комнатных цветов.

    • Кактусам и суккулентам будет достаточно почвы, в которой малое количество полезных веществ, и хорошая проходимость воды. Половина такого грунта состоит из песка, остальная часть – верховой торф.

    • Орхидеи предпочитают в основном земли, где содержатся уголь, мох, а иногда кора и торф. Такая «орхидейная» земля при добавке верхового торфа также подойдет для семейств типа филодендронов, антуриумов и бромелиевых. Грунт под семейство бромелиевые полностью из верхового торфа с добавками земли с листьями и песка.
    • Земля под пальмы должна легко пропускать воздух, в основе лежит тоже верховой торф с большими примесями песка и земли с листьями.
    • Папоротникам нравится почва, которая хорошо пропускает воздух и богата органическими удобрениями. Для создания такого типа земли можно к грунту для кактусов добавить землю, насыщенную органическими удобрениями.

    • Грунт для геснериевых – это кислая среда, за основу которой взят верховой торф. Добавьте немного разрыхлителей, песка или вермикулита, а, чтобы лучше держать воду, в почву вносят мох сфагнум.
    • Земля, предназначенная для гардений, должна состоять из песка и верхового торфа с добавлениями земли с листьями или хвоей. При удобрении земли зачастую необходимо применять исключительно кислые смеси.
    • Азалии любят кислую почву, важно, чтобы воздух и влага легко проникали и циркулировали в слоях ее почвы. Создается такой грунт на основе опять же верхового торфа с примесью к нему земли с хвоей.

    Почва для садовых растений

    Теперь перейдем к выбору грунта для дачного участка. Плодородной землей, в особенности для садовых участков является соотношении 50/30/20, где 50% составляет торфяная основа, 30% чернозём и 20% песка. Песок легко пропускает влагу и воздух, а торф задерживает в себе питательные элементы и не даёт уходить влаге. Чернозёмная же земля имеет нейтральную кислотность, в ней большое содержание гумуса, поэтому она выступает как источник полезных элементов для растений. Такая плодородная смесь делает грунт идеальным для роста и развития культур на садовых участках и огородах.

    В заключение можно сказать, что на территории нашей страны большое многообразие различных почвенных вариантов. Но с каким бы видом грунта и сложностью вам не пришлось столкнуться на своих участках и в комнатных условиях, помните, что любой грунт можно доработать и усовершенствовать под конкретную культуру вашего сада.

    diy.obi.ru

    Техногенный грунт: классификация и характеристики

    Техногенные грунты – это естественные грунты и почвы, которые подверглись изменению и перемещению в результате производственной и хозяйственной деятельности человека. Такой материал также называют искусственным грунтом. Изготавливают его для промышленных нужд, а также для благоустройства городских территорий.

    Предназначение искусственного грунта

    грунтовая насыпь с проложенной дорогой

    Техногенные грунты часто используют в качестве основания жилых, инженерных и промышленных построек. Также из данного материала сооружают железнодорожные насыпи и земляные плотины.

    Как правило, объемы строительства на техногенных грунтах измеряются сотнями миллиардов кубических метров.

    Инженерно-геологические свойства грунта

    Добыча техногенного грунта

    Характеристики грунта определяются составом его материнской породы или отходов, полученных в ходе его обработки. Также инженерно-геологические свойства техногенного грунта можно определить характером воздействия на него человека. Чтобы специалисты смогли безошибочно определить характеристики добытого строительного материала, был создан ГОСТ под номером 25100-95. Он называется «Грунты и их классификация». В данном документе материал для постройки инженерных сооружений (насыпей и фундаментов зданий) выделен в отдельный класс.

    Классификация техногенных грунтов состоит из нескольких групп:

    • 1 группа: скальные, мерзлые и дисперсные. Отличить их можно по характеру структурных связей.
    • 2 группа: связные, скальные, несвязные, не скальные и ледяные. Друг от друга они отличаются прочностью.
    • 3 группа: природные образования, которые изменились во время естественного залегания в земле, а также природные перемещенные образования, измененные в результате физического и физико-химического воздействия. Также к третьей группе специалисты относят насыпные и намывные грунты, которые были изменены в результате теплового воздействия.

    Также класс техногенных грунтов определяется делением его на типы и виды. Подразделяют по вещественному составу, наименованию, воздействию, происхождению, условию образования и прочим условиям. Многие специалисты считают, что существующая классификация техногенных насыпных грунтов имеет ряд недостатков и требует некоторых уточнений.

    Культурные слои

    техногенный грунт для автомобильной дороги

    Культурными слоями называют образования своеобразного состава, обусловленного геологическими условиями местности, где залегает материал. Он определяется характером хозяйственной деятельности. Такой техногенный грунт имеет неоднородный состав по вертикали и площади. В современном мире его активно используют в строительстве.

    Чтобы добыть культурный слой, который залегает на несколько сотен метров в глубине земли, требуется разработать способ инженерно-геологического изыскания. Во время проведения таких работ от инженеров потребуется организовать места для сбора строительного мусора, а также бытовых и производственных отходов. Стоит учесть, что проведение таких работ на территории старых кладбищ и скотомогильников строго запрещено российским законодательством.

    Перемещенные природные образования

    Грунт для строительства железнодорожных насыпей

    Природными перемещенными образованиями называют такие грунты, которые были изъяты из мест его естественного залегания, а затем подверглись частичной производственной переработке. Данный строительный материал формируется из дисперсных связных и несвязных грунтов.

    Скальные и полускальные породы сначала дробят на станках, а затем перемещают их уже как дисперсные крупнообломочные грунты. Также поступают и с мерзлыми горными породами. По способу укладки перемещенные образования разделяют на намывные и насыпные. В свою очередь насыпные грунты в зависимости от природы образования подразделяются на планомерно и непланомерно отсыпные. Также их делят в зависимости от применения на строительные и промышленные.

    Благодаря прочностным характеристикам техногенных грунтов их используют для строительства автомобильных и железнодорожных насыпей. Также данный материал используют для возведения плотин, дамб, оснований для зданий.

    Особенности грунтов

    Карьер, где добывают строительный грунт

    К инженерно-геологическим особенностям техногенных грунтов, используемых в строительстве насыпей и отвалов, относят:

    1. Нарушение структуры породы в теле насыпи в результате снижения прочности строительного материала.
    2. Фракционирование грунта и самовыполаживание откосов.
    3. Изменение прочности. Сопротивление сдвигу увеличивается в связи с уплотнением или снижается в результате сильного увлажнения.
    4. Образование в водонасыщенных грунтах насыпи порового давления, в результате которого повышается риск возникновения оползней.

    В зависимости от литологического состава специалисты делят насыпи на два вида: однородные и неоднородные. Данный фактор изменчив и зависит от естественного фракционирования данного стройматериала в процессе отсыпки. При этом мелкие фракции обычно концентрируются в верхней части насыпи, а крупные – в нижней. Так происходит в результате использования разнородных по составу стройматериалов.

    Прочность грунта

    Прочностные характеристики насыпных техногенных грунтов определяют, учитывая условия формирования откосов. При расчетах устойчивости насыпи инженерам необходимо учитывать незавершенность уплотнения грунтовой массы, которая оценивается уже после проведения сдвиговых испытаний.

    Максимальная плотность техногенного грунта, который используется для сооружения насыпей, достигается по истечении нескольких лет и зависит от вида используемого материала. К примеру, супесчано-песчаные грунты с примесями из торфа уплотняются в течении 2-4 лет с момента завершения строительства. Суглинки и глины достигают максимальной плотности в течение 8-12 лет. Насыпи из супеси и пески средней и мелкой фракции уплотняются в течение 2-6 лет.

    Намывной грунт

    Загрузка грунта на самосвалы

    Намывной техногенный грунт создается с помощью гидромеханизации с использованием системы трубопроводов. В процессе строительства специалисты выполняют организованные и неорганизованные намывы. Первые необходимы для инженерно-строительных целей. Их сооружают уже с заранее заданными свойствами. С помощью таких сооружений намывают плотные толщи песка, плотины и дамбы, рассчитанные на средний напор воды.

    Неорганизованные намывы служат для перемещения грунтовых пород, чтобы освободить земельный участок для дальнейшего проведения работ, таких как добыча природных строительных материалов и других полезных ископаемых.

    Возведение грунтовых сооружений и освобождение территорий гидромеханизацией включает в себя несколько этапов:

    1. Гидравлическая разработка грунтовых пород с использованием гидромониторов и землесосных снарядов.
    2. Гидротранспортировка добытого материала по распределительным и магистральным трубопроводам.
    3. Организация намыва техногенного грунта в земляные сооружения или на свободные территории, которые должны служить для размещения добытой горной породы.

    Свойства намывного стройматериала

    Инженерно-геологические свойства намывных грунтов определяются их составом и физико-химическим взаимодействием его отдельных частиц с водой. Состав техногенного грунта, который используется в строительстве, зависит от места его добычи в естественных условиях, а также способов работ, связанных со строительством и намывом данного стройматериала.

    Свойства намывного грунта зависят прежде всего от физико-географических факторов, таких как рельеф участка и климата в месте добывания стройматериала. Также специалисты учитывают состояние и свойства основания намывного сооружения, построенного из этой породы.

    Состав намывного грунта

    Проведение раскопок для добычи стройматериала

    Состав органических веществ в намывном грунте определяет время приобретения его физико-механических свойств. В процессе намыва смесь разделяется на фракции. Крупные частницы концентрируются в большинстве своем возле выпуска гидросмеси, в том месте, где сформирована приоткосная зона. Тонкопесчаные частицы располагаются в промежуточной зоне, а тонкие, состоящие в основном из глины, формируют прудковую зону.

    Инженеры разделяют несколько стадий формирования свойств намывных грунтов:

    1. Уплотнение стройматериала, которое происходит в результате гравитационного воздействия на него. Также происходит интенсивная водоотдача. Именно в этот период происходит основной процесс самоуплотнения. Этот процесс, как правило, не занимает более года.
    2. Упрочнение грунта происходит за счет обжатия песка. Между мелкими частицами стройматериала повышается динамическая устойчивость. Данный процесс занимает от года до трех лет.
    3. Стабилизационное состояние формируется за счет образования цементационных связей, которым не страшны водяные потоки. На заключительной стадии данного процесса намывные пески значительно упрочнены. Длительность стабилизации сооружения достигается в течение десяти лет и более.

    Строительство зданий на техногенном грунте

    Все проводимые работы при отсыпке и намыве грунта для дальнейшего строительства сооружений должны проводиться только при строгом геотехническом контроле, который осуществляет опытный инженерный состав. Строительный материал должен быть оценен сразу по нескольким показателям, таким как степень однородности насыпи, содержание в нем органических веществ, физико-механические свойства и прочее. Также инженерам-геологам необходимо выяснить способность грунта генерировать различные газы, например метан, а также диоксид углерода. Образование этих веществ происходит в результате разложения органических веществ.

    Если выяснится, что насыпь не имеет достаточной прочности, которая требуется для дальнейшего строительства, построенный объект необходимо дорабатывать несколькими способами:

    1. Уплотнять тяжелой техникой (катками, трамбовочными автомобилями, вибрационными машинами).
    2. Укреплять насыпь бетонными сваями и плитами.
    3. Усиливать конструкцию посредством направленных взрывов.
    4. Производить глубинное укрепление грунта.
    5. Прорезать постройку для ее усиления с помощью опор.

    Если в местах строительства периодически идут сильные осадки, строителям необходимо проводить конструктивные мероприятия, которые будут направлены на повышение прочности всего сооружения, в том числе дорог, зданий. Необходимо проводить мероприятия по усилению фундамента, чтобы предотвратить неравномерную деформацию бетона.

    fb.ru

    Добавить комментарий