Какие бывают растворы – Виды растворов. Виды концентрации растворов

Содержание

Виды растворов. Виды концентрации растворов

Растворы – это состоящая из двух или более веществ однородная масса или смесь, в которой одно вещество выступает в качестве растворителя, а другое – в качестве растворяемых частиц.

Существует две теории трактовки происхождения растворов: химическая, основоположником которой является Менделеев Д. И., и физическая, предложенная немецким и швейцарским физиками Оствальдом и Аррениусом. Согласно трактовке Менделеева, компоненты растворителя и растворяемого веществ становятся участниками химической реакции с образованием неустойчивых соединений этих самых компонентов или частиц.

Физическая же теория отрицает химическое взаимодействие между молекулами растворяющего и растворяемого веществ, объясняя процесс образования растворов как равномерное распределение частиц (молекул, ионов) растворителя между частицами растворяемой субстанции вследствие физического явления, именуемого диффузией.

Классификация растворов по различным критериям

На сегодня нет единой системы классификации растворов, однако условно виды растворов можно сгруппировать по наиболее значимым критериям, а именно:

I) По агрегатному состоянию выделяют: твёрдые, газообразные и жидкие растворы.

II) По размерам частиц растворённого вещества: коллоидные и истинные.

III) По степени концентрации частиц растворённого вещества в растворе: насыщенные, ненасыщенные, концентрированные, разбавленные.

IV) По способности проводить электрический ток: электролиты и неэлектролиты.

V) По назначению и области применения: химические, медицинские, строительные, специальные растворы и др.

Виды растворов по агрегатному состоянию

Классификация растворов по агрегатному состоянию растворителя приводится в широком смысле значения этого термина. Принято считать растворами жидкие субстанции (причём в качестве растворяемого вещества может выступать как жидкий, так и твёрдый элемент), однако если учесть тот факт, что раствор – это гомогенная система из двух или нескольких веществ, то вполне логично признать также и твёрдые растворы, и газообразные. Твёрдыми растворами принято считать смеси, например, нескольких металлов, больше известных в обиходе как сплавы. Газообразные виды растворов – это смеси нескольких газов, пример – окружающий нас воздух, который представлен в виде соединения кислорода, азота и углекислого газа.

Растворы по размеру растворённых частиц

Виды растворов по размеру растворённых частиц включают истинные (обычные) растворы и коллоидные системы. В истинных растворах растворяемое вещество распадается на мелкие молекулы или атомы, по размерам приближённые к молекулам растворителя. При этом истинные виды растворов сохраняют первоначальные свойства растворителя, лишь слегка преображая его под действием физико-химических свойств добавленного в него элемента. Например: при растворении поваренной соли или сахара в воде вода остаётся в том же агрегатном состоянии и той же консистенции, практически такого же цвета, меняется только её вкус.

Коллоидные растворы отличаются от обычных тем, что добавляемый компонент распадается не полностью, сохраняя сложные молекулы и соединения, размеры которых значительно превышают частицы растворителя, превосходя значение 1 нанометра.

Виды концентрации растворов

В одно и то же количество растворителя можно добавить разное количество растворяемого элемента, на выходе будем иметь растворы с разной концентрацией. Перечислим основные из них:

  1. Насыщенные растворы характеризуются степенью растворимости вещества, при которой растворяемый компонент под влиянием постоянной величины температуры и давления больше не распадается на атомы и молекулы и раствор достигает фазового равновесия. Насыщенные растворы также условно можно разделить на концентрированные, в которых массовая доля растворённого компонента сопоставима с растворителем, и на разбавленные, где растворённого вещества в несколько раз меньше растворителя.
  2. Ненасыщенные – это те растворы, в которых растворяемое вещество ещё может распадаться на мелкие частицы.
  3. Пересыщенные растворы получаются тогда, когда изменяются параметры воздействующих факторов (температура, давление), в результате чего продолжается процесс «дробления» растворённого вещества, его становится больше, чем было при нормальных (обычных) условиях.

Электролиты и неэлектролиты

Некоторые вещества в растворах распадаются на ионы, способные проводить электрический ток. Такие гомогенные системы называются электролитами. В эту группу входят кислоты, большинство солей. А растворы, не проводящие электрический ток, принято называть неэлектролитами (почти все органические соединения).

Группы растворов по назначению

Растворы незаменимы во всех отраслях народного хозяйства, специфика которых создала такие виды специальных растворов, как медицинские, строительные, химические и другие.

Медицинские растворы – это совокупность препаратов в форме мазей, суспензий, микстур, растворов для инфузий и инъекций и прочих лекарственных форм, применяемых в медицинских целях для лечения и профилактики различных заболеваний.

Виды химических растворов включают в себя огромное множество гомогенных соединений, используемых в химических реакциях: кислоты, соли. Эти растворы могут быть органического или неорганического происхождения, водные (морская вода) или безводные (на основе бензола, ацетона и т. д.), жидкие (водка) или твёрдые (латунь). Они нашли своё применение в самых различных отраслях национального хозяйства: химическая, пищевая, текстильная промышленность.

Виды строительных растворов отличаются вязкой и густой консистенцией, из-за чего им больше подходит название смеси.

Благодаря своей способности быстро затвердевать они с успехом применяются в качестве вяжущего материала для кладки стен, потолков, несущих конструкций, а также для отделочных работ. Представляют собой водные растворы, чаще всего трёхкомпонентные (растворитель, цемент различных маркировок, заполнитель), где в качестве наполнителя используется песок, глина, щебень, известь, гипс и другие строительные материалы.

fb.ru

Растворы. Виды растворов — HimHelp.ru

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке — растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие — в ограниченных (хлорид натрия и вода).

Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na

+ и Cl, находящиеся на поверхности, в результате колебатель­ного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, кото­рые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На  рис  дана наглядная схема разрушения ионной кристаллической решетки NaСl при раство­рении в воде, состоящей из полярных молекул.

Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), на­ходящиеся в непрерывном движении, при столкновении с твердой  поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением — кристаллизацией. Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор — наступает равновесие.

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, — ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) — величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы — растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы — растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ — хотя и ненасы­щенные, но довольно концентрированными.

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

www.himhelp.ru

РАСТВОРЫ | Энциклопедия Кругосвет

Содержание статьи

РАСТВОРЫ, однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными. Так, воздух – это газообразный раствор, гомогенная смесь газов; водка – жидкий раствор, смесь нескольких веществ, образующих одну жидкую фазу; морская вода – жидкий раствор, смесь твердого (соль) и жидкого (вода) веществ, образующих одну жидкую фазу; латунь – твердый раствор, смесь двух твердых веществ (меди и цинка), образующих одну твердую фазу. Смесь бензина и воды не является раствором, поскольку эти жидкости не растворяются друг в друге, оставаясь в виде двух жидких фаз с границей раздела. Компоненты растворов сохраняют свои уникальные свойства и не вступают в химические реакции между собой с образованием новых соединений. Так, при смешивании двух объемов водорода с одним объемом кислорода получается газообразный раствор. Если эту газовую смесь поджечь, то образуется новое вещество – вода, которая сама по себе раствором не является. Компонент, присутствующий в растворе в большем количестве, принято называть растворителем, остальные компоненты – растворенными веществами.

Однако иногда бывает трудно провести грань между физическим перемешиванием веществ и их химическим взаимодействием. Например, при смешивании газообразного хлороводорода HCl с водой H

2O образуются ионы H3O+ и Cl. Они притягивают к себе соседние молекулы воды, образуя гидраты. Таким образом, исходные компоненты – HCl и H2O – после смешивания претерпевают существенные изменения. Тем не менее ионизация и гидратация (в общем случае – сольватация) рассматриваются как физические процессы, происходящие при образовании растворов.

Одним из важнейших типов смесей, представляющих собой гомогенную фазу, являются коллоидные растворы: гели, золи, эмульсии и аэрозоли. Размер частиц в коллоидных растворах составляет 1–1000 нм, в истинных растворах ~0,1 нм (порядка размера молекул).

Основные понятия.

Два вещества, растворяющиеся друг в друге в любых пропорциях с образованием истинных растворов, называют полностью взаиморастворимыми. Такими веществами являются все газы, многие жидкости (например, этиловый спирт – вода, глицерин – вода, бензол – бензин), некоторые твердые вещества (например, серебро – золото). Для получения твердых растворов необходимо сначала расплавить исходные вещества, затем смешать их и дать затвердеть. При их полной взаиморастворимости образуется одна твердая фаза; если же растворимость частичная, то в образовавшемся твердом веществе сохраняются мелкие кристаллы одного из исходных компонентов.

Если два компонента образуют одну фазу при смешивании только в определенных пропорциях, а в других случаях возникают две фазы, то они называются частично взаиморастворимыми. Таковы, например, вода и бензол: истинные растворы получаются из них только при добавлении незначительного количества воды к большому объему бензола или незначительного количества бензола к большому объему воды. Если же смешать равные количества воды и бензола, то образуется двухфазная жидкая система. Нижний ее слой – это вода с небольшим количеством бензола, а верхний – бензол с малой примесью воды. Известны также вещества, совсем не растворяющиеся одно в другом, например, вода и ртуть. Если два вещества лишь частично взаиморастворимы, то при данных температуре и давлении существует предельное количество одного вещества, которое способно образовать истинный раствор с другим в равновесных условиях. Раствор с предельной концентрацией растворенного вещества называют насыщенным. Можно приготовить и так называемый пересыщенный раствор, в котором концентрация растворенного вещества даже больше, чем в насыщенном. Однако пересыщенные растворы неустойчивы, и при малейшем изменении условий, например при перемешивании, попадании частичек пыли или добавлении кристалликов растворяемого вещества, избыток растворенного вещества выпадает в осадок.

Всякая жидкость начинает кипеть при той температуре, при которой давление ее насыщенного пара достигает величины внешнего давления. Например, вода под давлением 101,3 кПа кипит при 100° С потому, что при этой температуре давление водяного пара как раз равно 101,3 кПа. Если же растворить в воде какое-нибудь нелетучее вещество, то давление ее пара понизится. Чтобы довести давление пара полученного раствора до 101,3 кПа, нужно нагреть раствор выше 100° С. Отсюда следует, что температура кипения раствора всегда выше температуры кипения чистого растворителя. Аналогично объясняется и понижение температуры замерзания растворов.

Закон Рауля.

В 1887 французский физик Ф.Рауль, изучая растворы различных нелетучих жидкостей и твердых веществ, установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с концентрацией: относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества. Из закона Рауля следует, что повышение температуры кипения или понижение температуры замерзания разбавленного раствора по сравнению с чистым растворителем пропорционально молярной концентрации (или мольной доле) растворенного вещества и может быть использовано для определения его молекулярной массы.

Раствор, поведение которого подчиняется закону Рауля, называется идеальным. Наиболее близки к идеальным растворы неполярных газов и жидкостей (молекулы которых не меняют ориентации в электрическом поле). В этом случае теплота растворения равна нулю, а свойства растворов можно прямо предсказать, зная свойства исходных компонентов и пропорции, в которых они смешиваются. Для реальных растворов сделать такое предсказание нельзя. При образовании реальных растворов обычно выделяется или поглощается тепло. Процессы с выделением тепла называются экзотермическими, а с поглощением – эндотермическими.

Те характеристики раствора, которые зависят в основном от его концентрации (числа молекул растворенного вещества на единицу объема или массы растворителя), а не от природы растворенного вещества, называют коллигативными. Например, температура кипения чистой воды при нормальном атмосферном давлении равна 100° С, а температура кипения раствора, содержащего 1 моль растворенного (недиссоциирующего) вещества в 1000 г воды, составляет уже 100,52° С независимо от природы этого вещества. Если же вещество диссоциирует, образуя ионы, то температура кипения увеличивается пропорционально росту общего числа частиц растворенного вещества, которое благодаря диссоциации превышает число молекул вещества, добавленных в раствор. Другими важными коллигативными величинами являются температура замерзания раствора, осмотическое давление и парциальное давление паров растворителя.

Концентрация раствора

– это величина, отражающая пропорции между растворенным веществом и растворителем. Такие качественные понятия, как «разбавленный» и «концентрированный», говорят только о том, что раствор содержит мало или много растворенного вещества. Для количественного выражения концентрации растворов часто используют проценты (массовые или объемные), а в научной литературе – число молей или химических эквивалентов (см. ЭКВИВАЛЕНТНАЯ МАССА) растворенного вещества на единицу массы или объема растворителя либо раствора. Чтобы не возникало путаницы, следует всегда точно указывать единицы измерения концентрации. Рассмотрим следующий пример. Раствор, состоящий из 90 г воды (ее объем равен 90 мл, поскольку плотность воды равна 1г/мл) и 10 г этилового спирта (его объем равен 12,6 мл, поскольку плотность спирта равна 0,794 г/мл), имеет массу 100 г, но объем этого раствора равен 101,6 мл (а был бы равен 102,6 мл, если бы при смешивании воды и спирта их объемы просто складывались). Процентную концентрацию раствора можно рассчитать по-разному:

или

или

Единицы концентраций, используемые в научной литературе, основаны на таких понятиях, как моль и эквивалент, поскольку все химические расчеты и уравнения химических реакций должны основываться на том, что вещества вступают в реакции между собой в определенных соотношениях. Например, 1 экв. NaCl, равный 58,5 г, взаимодействует с 1 экв. AgNO3, равным 170 г. Ясно, что растворы, содержащие по 1 экв. этих веществ, имеют совершенно разные процентные концентрации.

Молярность

(M или моль/л) – число молей растворенного веществ, содержащихся в 1 л раствора.

Моляльность

(м) – число молей растворенного вещества, содержащихся в 1000 г растворителя.

Нормальность

(н.) – число химических эквивалентов растворенного вещества, содержащихся в 1 л раствора.

Мольная доля

(безразмерная величина) – число молей данного компонента, отнесенное к общему числу молей растворенного вещества и растворителя. (Мольный процент – мольная доля, умноженная на 100.)

Наиболее распространенная единица – молярность, но при ее расчете следует учитывать некоторые неоднозначности. Например, чтобы получить 1M раствор данного вещества, растворяют в заведомо небольшом количестве воды точную его навеску, равную мол. массе в граммах, и доводят объем раствора до 1 л. Количество воды, необходимое для приготовления данного раствора, может слегка различаться в зависимости от температуры и давления. Поэтому два одномолярных раствора, приготовленных в разных условиях, в действительности имеют не совсем одинаковые концентрации. Моляльность вычисляется исходя из определенной массы растворителя (1000 г), которая не зависит от температуры и давления. В лабораторной практике гораздо удобнее отмеривать определенные объемы жидкостей (для этого существуют бюретки, пипетки, мерные колбы), чем взвешивать их, поэтому в научной литературе концентрации чаще выражают в молях, а моляльность обычно применяют только при особо точных измерениях.

Нормальность используется для упрощения расчетов. Как мы уже говорили, вещества взаимодействуют друг с другом в количествах, соответствующих их эквивалентам. Приготовив растворы разных веществ одинаковой нормальности и взяв равные их объемы, мы можем быть уверены в том, что они содержат одно и то же количество эквивалентов.

В тех случаях, когда трудно (или нет необходимости) делать различие между растворителем и растворенным веществом, концентрацию измеряют в мольных долях. Мольные доли, как и моляльности, не зависят от температуры и давления.

Зная плотности растворенного вещества и раствора, можно пересчитать одну концентрацию в другую: молярность в моляльность, мольную долю и наоборот. Для разбавленных растворов данного растворенного вещества и растворителя эти три величины пропорциональны друг другу.

Растворимость

данного вещества – это его способность образовывать растворы с другими веществами. Количественно растворимость газа, жидкости или твердого тела измеряется концентрацией их насыщенного раствора при данной температуре. Это важная характеристика вещества, помогающая понять его природу, а также влиять на ход реакций, в которых это вещество участвует.

Газы.

В отсутствие химического взаимодействия газы смешиваются друг с другом в любых пропорциях, и в этом случае говорить о насыщении нет смысла. Однако при растворении газа в жидкости существует некая предельная концентрация, зависящая от давления и температуры. Растворимость газов в некоторых жидкостях коррелирует с их способностью к сжижению. Наиболее легко сжижаемые газы, например NH3, HCl, SO2, более растворимы, чем трудно сжижаемые газы, например O2, H2 и He. При наличии химического взаимодействия между растворителем и газом (например, между водой и NH3 или HCl) растворимость увеличивается. Растворимость данного газа изменяется с природой растворителя, однако порядок, в котором располагаются газы в соответствии с увеличением их растворимости, остается примерно одинаковым для разных растворителей.

Процесс растворения подчиняется принципу Ле Шателье (1884): если на систему, находящуюся в равновесии, оказывается какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится. Растворение газов в жидкостях обычно сопровождается выделением тепла. При этом, в соответствии с принципом Ле Шателье, растворимость газов уменьшается. Это уменьшение тем заметнее, чем выше растворимость газов: такие газы имеют и бóльшую теплоту растворения. «Мягкий» вкус кипяченой или дистиллированной воды объясняется отсутствием в ней воздуха, поскольку его растворимость при высокой температуре весьма мала.

С ростом давления растворимость газов увеличивается. Согласно закону Генри (1803), масса газа, который может раствориться в данном объеме жидкости при постоянной температуре, пропорциональна его давлению. Это свойство используется для приготовления газированных напитков. Углекислый газ растворяют в жидкости при давлении 3–4 атм.; в этих условиях в данном объеме может раствориться в 3–4 раза больше газа (по массе), чем при 1 атм. Когда емкость с такой жидкостью открывают, давление в ней падает, и часть растворенного газа выделяется в виде пузырьков. Аналогичный эффект наблюдается при открывании бутылки шампанского или выходе на поверхность подземных вод, насыщенных на большой глубине углекислым газом.

При растворении в одной жидкости смеси газов растворимость каждого из них остается такой же, как и в отсутствие других компонентов при таком же давлении, как в случае смеси (закон Дальтона).

Жидкости.

Взаимная растворимость двух жидкостей определяется тем, насколько сходно строение их молекул («подобное растворяется в подобном»). Для неполярных жидкостей, например углеводородов, характерны слабые межмолекулярные взаимодействия, поэтому молекулы одной жидкости легко проникают между молекулами другой, т.е. жидкости хорошо смешиваются. Напротив, полярные и неполярные жидкости, например вода и углеводороды, смешиваются друг с другом плохо. Каждой молекуле воды нужно сначала вырваться из окружения других таких же молекул, сильно притягивающими ее к себе, и проникнуть между молекулами углеводорода, притягивающими ее слабо. И наоборот, молекулы углеводорода, чтобы раствориться в воде, должны протиснуться между молекулами воды, преодолевая их сильное взаимное притяжение, а для этого нужна энергия. При повышении температуры кинетическая энергия молекул возрастает, межмолекулярное взаимодействие ослабевает и растворимость воды и углеводородов увеличивается. При значительном повышении температуры можно добиться их полной взаимной растворимости. Такую температуру называют верхней критической температурой растворения (ВКТР).

В некоторых случаях взаимная растворимость двух частично смешивающихся жидкостей увеличивается при понижении температуры. Этот эффект наблюдается в том случае, когда при смешивании выделяется тепло, обычно в результате химической реакции. При значительном понижении температуры, но не ниже точки замерзания, можно достичь нижней критической температуры растворения (НКТР). Можно предположить, что все системы, имеющие НКТР, имеют и ВКТР (обратное не обязательно). Однако в большинстве случаев одна из смешивающихся жидкостей кипит при температуре ниже ВКТР. У системы никотин–вода НКТР равна 61° С, а ВКТР составляет 208° C. В интервале 61–208° C эти жидкости ограниченно растворимы, а вне этого интервала обладают полной взаимной растворимостью.

Твердые вещества.

Все твердые вещества проявляют ограниченную растворимость в жидкостях. Их насыщенные растворы имеют при данной температуре определенный состав, который зависит от природы растворенного вещества и растворителя. Так, растворимость хлорида натрия в воде в несколько миллионов раз выше растворимости нафталина в воде, а при растворении их в бензоле наблюдается обратная картина. Этот пример иллюстрирует общее правило, согласно которому твердое вещество легко растворяется в жидкости, имеющей с ним сходные химические и физические свойства, но не растворяется в жидкости с противоположными свойствами.

Соли обычно легко растворяются в воде и хуже – в других полярных растворителях, например в спирте и жидком аммиаке. Однако растворимость солей тоже существенно различается: например, нитрат аммония обладает в миллионы раз большей растворимостью в воде, чем хлорид серебра.

Растворение твердых веществ в жидкостях обычно сопровождается поглощением тепла, и в соответствии с принципом Ле Шателье их растворимость должна увеличиваться при нагревании. Этот эффект можно использовать для очистки веществ методом перекристаллизации. Для этого их растворяют при высокой температуре до получения насыщенного раствора, затем раствор охлаждают и после выпадения растворенного вещества в осадок профильтровывают. Есть вещества (например, гидроксид, сульфат и ацетат кальция), растворимость которых в воде с ростом температуры уменьшается.

Твердые вещества, как и жидкости, тоже могут растворяться друг в друге полностью, образуя гомогенную смесь – истинный твердый раствор, аналогичный жидкому раствору. Частично растворимые друг в друге вещества образуют два равновесных сопряженных твердых раствора, составы которых изменяются с температурой.

Коэффициент распределения.

Если к равновесной системе двух несмешивающихся или частично смешивающихся жидкостей добавить раствор какого-либо вещества, то оно распределяется между жидкостями в определенной пропорции, не зависящей от общего количества вещества, в отсутствие химических взаимодействий в системе. Это правило получило название закона распределения, а отношение концентраций растворенного вещества в жидкостях – коэффициента распределения. Коэффициент распределения примерно равен отношению растворимостей данного вещества в двух жидкостях, т.е. вещество распределяется между жидкостями соответственно его растворимостям. Это свойство используется для экстракции данного вещества из его раствора в одном растворителе с помощью другого растворителя. Еще одним примером его применения является процесс экстракции серебра из руд, в состав которых оно часто входит вместе со свинцом. Для этого в расплавленную руду добавляют цинк, который не смешивается со свинцом. Серебро распределяется между расплавленным свинцом и цинком, преимущественно в верхнем слое последнего. Этот слой собирают и отделяют серебро дистилляцией цинка.

Произведение растворимости

(ПР). Между избытком (осадком) твердого вещества MxBy и его насыщенным раствором устанавливается динамическое равновесие, описываемое уравнением

Константа равновесия этой реакции равна

и называется произведением растворимости. Она постоянна при данных температуре и давлении и является величиной, на основании которой рассчитывают растворимость осадка и изменяют ее. Если в раствор добавить соединение, диссоциирующее на ионы, одноименные с ионами малорастворимой соли, то в соответствии с выражением для ПР растворимость соли уменьшается. При добавлении же соединения, реагирующего с одним из ионов, она, напротив, увеличится.

О некоторых свойствах растворов ионных соединений см. также ЭЛЕКТРОЛИТЫ.

www.krugosvet.ru

Растворы

73

Леккия №17

РАСТВОРЫ

План

  1. Общая характеристика растворов.

  2. Способы выражения концентрации растворов.

  3. Термодинамика и механизм процесса растворения.

  4. Растворимость.

  5. Вода как растворитель. Значение растворов в жизнедеятельности организмов

1. Общая характеристика растворов.

Растворы – это гомогенные системы переменного состава, включающие два и более компонентов. Частицы компонентов раствора распределены по его объему в виде атомов, молекул или ионов (размер частиц 0,1 – 0,5 нм).

Образование растворов, в отличие от механических смесей, сопровождается изменением энтальпии, энтропии и объема системы.

По агрегатному состоянию различают газовые, жидкие и твердые растворы. Но обычно термин растворы относится к жидким системам.

2. Способы выражения концентрации растворов.

Относительное содержание компонентов в растворе определяется его концентрацией.

М олярная концентрация – это количество вещества, содержащееся в одном литре раствора (моль/л):

Э квивалентная концентрация – это число молей эквивалентов вещества, содержащихся в одном литре раствора (моль/л):

Эквивалент – это реальная или условная частица вещества, которая в кислотно-основной реакции эквивалентна одному иону водорода, а в окислительно-восстановительной эквивалентна одному электрону.

Масса одного моля эквивалентов называется молярной массой эквивалента вещества (Э). В разных реакциях одно и то же вещество может иметь разные эквиваленты.

Моляльная концентрация – это количество вещества, содержащееся в одном килограмме растворителя (моль/кг):

М ассовая доля равна отношению массы растворенного вещества к массе раствора:

М олярная доля равна отношению количества растворенного вещества в общему количеству веществ в растворе:

К ак правило, вещество обладает определенной растворимостью в данном растворителе. Под растворимостью понимают концентрацию вещества в насыщенном растворе.

3. Термодинамика и механизм процесса растворения

Растворение – сложный физико-химический процесс, включающий три основные стадии, каждая из которых характеризуется изменениями термодинамических функций Н и S:

  1. разрушение химических и межмолекулярных связей в растворяемом веществе (например, разрушение кристаллической решетки): Н1>0, S1>0

  2. химическое взаимодействие частиц растворенного вещества с растворителем (сольватация): Н2<0, S2<0

  3. равномерное распределение частиц растворенного вещества в среде растворителя путем диффузии: Н3>0, S3>0

Согласно 2-му закону термодинамики условием самопроизвольности процесса растворения является убыль энергии Гиббса:

G = H — TS < 0,

которая складывается из энтальпийного Н и энтропийного TS факторов.

Растворение газов в жидкостях приводит к упорядочению системы и, следовательно, сопровождается уменьшением энтропии: Sр-ния<0. Движущей силой процесса растворения в этом случае является энтальпийный фактор и растворение большинства газов является процессом экзотермическим: Нр-ния<0. Таким образом, самопроизвольное растворение газов возможно при низких температурах (|Н| > |TS|)

Растворение жидких и твердых веществ в жидкостях приводит к увеличению беспорядка в системе и увеличению энтропии: Sр-ния>0. Суммарный тепловой эффект процесса растворения определяется в основном слагаемыми Н1 и Н2 и в зависимости от их соотношения может и быть и положительным (NaCl), и отрицательным (NaOH). Растворение большинства кристаллических веществ – процесс эндотермический Нр-ния>0, так как энергия, затрачиваемая на разрушение кристаллической решетки не компенсируется энергией, выделяемой за счет сольватации. Таким образом, самопроизвольному растворению большинства твердых веществ способствуют высокие тепмературы (|Н| < |TS|).

Растворы, образование которых не сопровождается изменениями объема системы и тепловыми эффектами (V=0, Н=0), называют идеальными. Движущей силой образования идеального раствора является увеличение энтропии системы. Идеальный раствор – понятие абстрактное. Реальные системы могут лишь приближаться к идеальным. Наиболее близки к модели идеального раствора системы, в которых компоненты близки по свойствам и практически не взаимодействуют друг с другом (например, раствор толуола в бензоле). Приближаются по свойствам к идеальным бесконечно разбавленные растворы, в которых взаимодействиях сводятся к минимуму за счет низкой концентрации растворенного вещества.

4. Растворимость

Под растворимостью понимают концентрацию растворенного вещества в насыщенном растворе.

Растворимость выражают в тех же единицах, что и концентрацию. Часто используют коэффициент растворимости s, равный массе растворенного вещества (г) в насыщенном растворе, содержащем 100 г растворителя.

Насыщенным называют раствор, который находится в равновесии с избытком растворяемого вещества (Gр-ния=0). Насыщенный раствор имеет максимально возможную в данных условиях концентрацию.

Растворимость зависит:

  • от природы растворенного вещества и растворителя;

  • от температуры;

  • от давления;

  • от присутствия третьих компонентов.

Влияние природы компонентов на растворимость определяется принципом: подобное растворяется в подобном. Полярные растворители, например, вода, хорошо растворяют вещества с ионной связью (неорганические соли, кислоты и основания). Хорошей растворимостью в воде обладают полярные органические соединения, образующие с молекулами растворителя водородные связи (спирты, карбоновые кислоты, амины). Неполярные растворители, например, углеводороды, растворяют неполярные и малополярные соединения (жиры).

Влияние температуры на растворимость зависит от теплового эффекта растворения и определяется принципом Ле Шателье. Повышению растворимости газов способствует понижение температуры, так как растворение газов – процесс экзотермический. Растворимость большинства твердых веществ и жидкостей — процесс эндотермический и возрастает при повышении температуры.

Влияние давления существенно только в том случае, если при растворении происходит значительное изменение объема системы, что наблюдается при растворении газов в жидкостях. Растворимость газов растет с увеличением давления, так как сопровождается уменьшением объема системы.

Закон Генри:

Количество газа, растворенного в определенном объеме жидкости при постоянной температуре прямо пропорционально давлению газа.

c(X) = Kгp(X)

где c(X) – молярная концентрация газа,моль/л

Kг — константа Генри, моль/лПа

p(X) – давление газа над раствором, Па

Влияние присутствия третьих компонентов.

Растворимость газов в жидкостях значительно снижается в присутствии электролитов (солей) Этот процесс называют высаливанием.

Закон Сеченова:

Растворимость газов в жидкостях в присутствии электролитов понижается.

С(X) = С0(X)

где С(X) – растворимость газа в присутствии электролита

С0(X) – растворимость газа в чистом растворителе

КС — константа Сеченова

Сэ — концентрация электролита

Биологическое значение законов Генри и Сеченова.

Изменение растворимости газов в крови при изменении давления может привести к тяжелым заболеванием. Кесонная болезнь у водолазов – проявление закона Генри. В соответствии с законом Сеченова растворимость кислорода и углекислого газа в крови зависит от концентрации электролитов, а также белков, липидов и других веществ.

5. Вода как растворитель. Значение растворов в жизнедеятельности организмов

Самым распространенным растворителем на нашей планете является вода. У животных и растительных организмов содержание воды составляет обычно более 50%, а в ряде случаев достигает 90-95%.

Вода хорошо растворяет многие ионные и полярные соединения. Такое свойство воды связано с ее высокой диэлектрической проницаемостью (= 78,5). В результате многие ионные соединения диссоциируют и отличаются высокой растворимостью в воде. Другой класс веществ, хорошо растворимых в воде, составляют полярные органические соединения (спирты, альдегиды, кетоны). Их растворимость обусловлена образованием водородных связей с молекулами воды.

Важны и другие аномальные свойства воды: высокое поверхностное натяжение, низкая вязкость, высокие температуры плавления и кипения, более высокая плотность в жидком состоянии, чем в твердом.

Вследствие высокой полярности вода вызывает гидролиз веществ (эфиров, амидов и др.). Так как вода составляет основную часть внутренней среды организма, то она обеспечивает процессы всасывания, передвижения питательных веществ и продуктов обмена в организме.

Важнейшие биологические жидкости – кровь, лимфа, моча, слюна, пот являются растворами солей, белков, углеводов, липидов в воде. Биохимические процессы в живых организмах протекает в водных растворах.

В жидких средах организма поддерживается постоянство рН, концентрации солей и органических веществ, постоянство осмотического давления. Такое постоянство называется гомеостазом. Приведенные примеры показывают, что учение о растворах представляет особый интерес для медиков.

73

studfile.net

Раствор — это… Что такое Раствор?

Растворение поваренной соли (NaCl) в воде

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия. «Гомогенный» — значит, каждый из компонентов распределён в массе другого в виде своих частиц, то есть атомов, молекул или ионов.[1].

Раствор — однофазная система переменного, или гетерогенного, состава, состоящая из двух или более компонентов.

Растворитель — компонент, агрегатное состояние которого не изменяется при образовании раствора. В случае же растворов, образующихся при смешении газа с газом, жидкости с жидкостью, твёрдого вещества с твёрдым, растворителем считается компонент, количество которого в растворе преобладает[1].

Образование того или иного типа раствора обусловливается интенсивностью межмолекулярного, межатомного, межионного или другого вида взаимодействия, то есть, теми же силами, которые определяют возникновение того или иного агрегатного состояния. Отличия: образование раствора зависит от характера и интенсивности взаимодействия частиц разных веществ[1].

По сравнению с индивидуальными веществами по структуре растворы сложнее[1].

Растворы бывают газовыми, жидкими и твёрдыми[1].

Твёрдые, жидкие, газообразные растворы

Чаще под раствором подразумевается жидкое вещество, например раствор соли или спирта в воде (или даже раствор золота в ртути — амальгама).

Существуют также растворы газов в жидкостях, газов в газах и жидкостей в жидкостях, в последнем случае растворителем считается вода, или же компонент, которого больше.

В химической практике обычно под растворами понимают гомогенные системы, растворитель может быть жидким, твёрдым (твёрдый раствор), газообразным. Однако нередко допускается и микрогетерогенность — см. «Золи».

«Раствором» именуют и смесь цемента с водой, песком и так далее. Хотя это и не является раствором в химическом смысле этого слова.

Истинные и коллоидные растворы

Коллоидные и истинные растворы (изучением коллоидных систем занимается коллоидная химия) отличаются главным образом размерами частиц.

В истинных растворах размер частиц менее 1·10−9 м, частицы в таких растворах невозможно обнаружить оптическими методами; в то время как в коллоидных растворах размер частиц 1·10−9 м — 5·10−7 м, частицы в таких растворах можно обнаружить при помощи ультрамикроскопа (см. эффект Тиндаля).

Растворение

Растворение — переход молекул вещества из одной фазы в другую (раствор, растворенное состояние). Происходит в результате взаимодействия атомов (молекул) растворителя и растворённого вещества и сопровождается увеличением энтропии при растворении твёрдых веществ и её уменьшением при растворении газов. При растворении межфазная граница исчезает, при этом многие физические свойства раствора (например, плотность, вязкость, иногда — цвет, и другие) меняются.

В случае химического взаимодействия растворителя и растворённого вещества сильно меняются и химические свойства — например, при растворении газа хлороводорода в воде образуется жидкая соляная кислота.

Растворы электролитов и неэлектролитов

Электролиты — вещества, проводящие в расплавах или водных растворах электрический ток. В расплавах или водных растворах они диссоциируют на ионы. Неэлектролиты — вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.

Растворы полимеров

Растворы высокомолекулярных веществ ВМС — белков, углеводов и др. обладают одновременно многими свойствами истинных и коллоидных растворов. Средняя молекулярная масса растворенноо…

В зависимости от цели для описания концентрации растворов используются разные физические величины.

В случаях приготовления растворов сильных кислот согласно правилам техники безопасности кислоту нужно добавлять в воду, но ни в коем случае не наоборот. Для запоминания этого лабораторного приёма существует несколько мнемонических правил:

Сначала вода,
Потом кислота,
Иначе случится
Большая беда

Химик, запомни как оду!
Льют кислоту в воду!

  • Не плюй в кислоту, а то она ответит!
  • Чай с лимоном (здесь нужно представить, как в чай Вы кладете дольку лимона).

«коньяк выдержанный» (кислоту в воду)

См. также

Примечания

Литература

  • Streitwieser Andrew Introduction to Organic Chemistry. — 4th ed.. — Macmillan Publishing Company, New York, 1992. — ISBN ISBN 0-02-418170-6

dic.academic.ru

Истинные растворы — это что такое? Свойства и состав

В природе практически не встречаются чистые вещества. В основном они представлены в виде смесей, которые способны образовывать гомогенные либо гетерогенные системы.

Особенности истинных растворов

Истинные растворы — это разновидность дисперсных систем, имеющих большую прочность между дисперсионной средой и дисперсной фазой.

У любого химического вещества можно получить кристаллы разных размеров. В любом случае у них будет одинаковое внутреннее строение: ионная либо молекулярная кристаллическая решетка.

Растворение

В процессе растворения в воде крупинок хлорида натрия и сахара происходит образование ионного и молекулярного раствора. В зависимости от степени раздробленности, вещество способно находиться в виде:

  • видимых макроскопических частиц, размер которых больше 0,2 мм;
  • микроскопических частиц, имеющих размер меньше 0,2 мм, уловить их можно только с помощью микроскопа.

Истинные и коллоидные растворы отличаются между собой размером частиц растворяемого вещества. Невидимые в микроскоп кристаллы называют коллоидными частицами, а получаемое состояние именуют коллоидным раствором.

Фаза раствора

Во многих случаях истинные растворы — это раздробленные (дисперсные) системы гомогенного вида. В них присутствует сплошная непрерывная фаза – дисперсионная среда, и раздробленные частицы определенной формы и размера (дисперсная фаза). Чем отличаются коллоидные растворы от истинных систем?

Основное различие состоит в размерах частиц. Коллоидно-дисперсные системы считают гетерогенными, так как в световом микроскопе невозможно обнаружить границу раздела фаз.

Истинные растворы — это тот вариант, когда в окружающей среде вещество представлено в виде ионов либо молекул. Они относятся к однофазным гомогенным растворам.

В качестве обязательного условия образования дисперсных систем рассматривается взаимное растворение дисперсионной среды и диспергируемого вещества. К примеру, хлорид натрия и сахароза нерастворимы в бензоле и керосине, поэтому в таком растворителе не будут образовываться коллоидные растворы.

Классификация дисперсных систем

Как делятся дисперсные системы? Истинные растворы, коллоидные системы отличаются по нескольким параметрам.

Существует подразделение дисперсных систем по агрегатному состоянию среды и дисперсной фазы, образованию либо отсутствию взаимодействия между ними.

Характеристики

Существуют определенные количественные характеристики дисперсности вещества. В первую очередь выделяют степень дисперсности. Эта величина обратна размеру частиц. Она характеризует то количество частичек, которое можно разместить в ряд на расстоянии одного сантиметра.

В том случае, когда все частицы обладают одинаковыми размерами, образуется монодисперсная система. При неодинаковых частицах дисперсной фазы образуется полидисперсная система.

С повышением дисперсности вещества у него повышаются процессы, которые происходят в межфазовой поверхности. Например, возрастает удельная поверхность дисперсной фазы, растет физико-химическое воздействие среды на границе раздела двух фаз.

Варианты дисперсных систем

В зависимости от того, в какой фазе будет находиться растворяемое вещество, выделяют разные варианты дисперсных систем.

Аэрозоли – дисперсные системы, в которых дисперсная среда представлена в газообразном виде. Туманы — это аэрозоли, имеющие жидкую дисперсную фазу. Дым и пыль образуются твердой дисперсной фазой.

Пены являются дисперсией в жидкости газообразного вещества. Жидкости в пенах вырождаются до пленок, которые разделяют пузырьки газа.

Эмульсиями называют дисперсные системы, где одна жидкость распределяется по объему другой, не растворяясь в ней.

Суспензии или взвеси — это низкодисперсные системы, в которых твердые частицы находятся в жидкости. Коллоидные растворы или золи при водной дисперсной системе называют гидрозолями.

В зависимости от наличия (отсутствия) между частицами дисперсной фазы выделяют свободнодисперсные или связнодисперсные системы. К первой группе относятся лиозоли, аэрозоли, эмульсии, суспензии. В таких системах отсутствуют контакты между частицами и дисперсной фазой. Они без ограничений передвигаются в растворе под действием силы тяжести.

Связнодисперсные системы возникают в случае контакта частиц с дисперсной фазой, в результате которых образуются структуры в виде сетки либо каркаса. Такие коллоидные системы называют гелями.

Процесс гелеобразования (желатинирования) представляет собой превращение золя в гель, основанный на понижении устойчивости исходного золя. Примерами связнодисперсных систем являются суспензии, эмульсии, порошки, пены. К ним также можно отнести почву, образованную в процессе взаимодействия органических (гумусных) веществ и почвенных минералов.

Капиллярно-дисперсные системы отличаются сплошной массой вещества, пронизывающей капилляры и поры. Ими считают ткани, разные мембраны, дерево, картон, бумагу.

Истинные растворы — это гомогенные системы, состоящие из двух компонентов. Они могут существовать в разных по агрегатному состоянию растворителях. Растворителем считают вещество, взятое в избытке. Компонент, который берут в недостаточном количестве, считается растворенным веществом.

Особенности растворов

Твердые сплавы тоже являются растворами, в которых в роли дисперсной среды и компонента выступают различные металлы. С практической точки зрения особый интерес представляют такие жидкие смеси, в которых жидкость выступает растворителем.

Из многочисленных неорганических растворителей особый интерес представляет вода. Практически всегда истинный раствор образуется при смешивании с водой частичек растворяемого вещества.

Среди органических соединений прекрасными растворителями являются следующие вещества: этанол, метанол, бензол, четыреххлористый углерод, ацетон. Благодаря хаотичному движению молекул или ионов растворяемого компонента происходит частичный переход их в раствор, образование новой однородной системы.

Вещества отличаются по способности образования растворов. Одни могут смешиваться друг с другом в неограниченных количествах. Примером служит растворение в воде кристаллов поваренной соли.

Суть процесса растворения с точки зрения молекулярно-кинетической теории заключается в том, что после внесения в растворитель кристаллов поваренной соли происходит диссоциация его на катионы натрия и анионы хлора. Заряженные частицы совершают колебательное движение, соударения с частицами самого растворителя приводят к переходу ионов в растворитель (связыванию). Постепенно к процессу подключаются и другие частицы, разрушается поверхностный слой, кристалл соли растворяется в воде. Диффузия позволяет распределять частицы вещества по объему растворителя.

Виды истинных растворов

Истинный раствор — это система, которая подразделяется на несколько видов. Существует классификация таких систем на водные и неводные по виду растворителя. Их также классифицируют по варианту растворенного вещества на щелочи, кислоты, соли.

Есть различные виды истинных растворов по отношению к электрическому току: неэлектролиты, электролиты. В зависимости от концентрации растворяемого вещества они могут быть разбавленными либо концентрированными.

Истинные растворы низкомолекулярных веществ с термодинамической точки зрения делят на реальные и идеальные.

Такие растворы могут быть ионно-дисперсными, а также молекулярно-дисперсными системами.

Насыщенность растворов

В зависимости от того, какое количество частиц переходит в раствор, существуют пересыщенные, ненасыщенные, насыщенные растворы. Раствор представляет собой жидкую либо твердую гомогенную систему, которая состоит из нескольких компонентов. В любой подобной системе обязательно присутствует растворитель, а также растворенное вещество. При растворении некоторых веществ наблюдается выделение тепла.

Подобный процесс подтверждает теорию растворов, согласно которой, растворение рассматривается как физико-химический процесс. Существует подразделение процесса растворимости на три группы. Первую составляют те вещества, которые способны растворяться в количестве от 10 г в 100 г растворителя, их именуют хорошо растворимыми.

Малорастворимыми считают вещества, если меньше 10 г растворяется в 100 г компонента, остальные называют нерастворимыми.

Заключение

Системы, состоящие из разных по агрегатному состоянию, размерам частиц, необходимы для нормальной жизнедеятельности человека. Истинные, коллоидные растворы, рассмотренные выше, используют для изготовления лекарственных препаратов, создания продуктов питания. Имея представление о концентрации растворенного вещества, можно самостоятельно приготовить необходимый раствор, например, этилового спирта или уксусной кислоты, для различных целей в повседневной жизни. В зависимости от того, в каком агрегатном состоянии находятся растворяемое вещество и растворитель, получаемые системы имеют определенные физические и химические характеристики.

fb.ru

Строительные растворы: виды,свойства,применение,фото,видео. | Строительные материалы

 

Строительные растворы — это смеси из вяжущего вещества, воды и мелкого заполнителя, приобретающие в результате процесса твердения однородную камнеподобную структуру. До затвердевания их называют растворными смесями и используют для каменной кладки стен, фундаментов и оштукатуривания поверхностей различных конструкций. По виду вяжущих веществ и добавок различают растворы цементные, известковые, цементно-известковые, цементно-глиняные и некоторые другие комбинации

Свойства строительных растворов

Удобоукладываемость – это свойство растворной смеси легко укладываться плотным и тонким слоем на пористое основание и не расслаиваться при хранении, перевозке и перекачивании растворонасосами. Она зависит от подвижности и способности смеси.

Подвижность смесей характеризуется глубиной погружения металлического конуса (массой 300 г) стандартного прибора. Подвижность назначают в зависимости от вида и отсасывающей способности основания. Для кирпичной кладки подвижность раствора составляет 9-13 см, для заполнения швов между панелями и другими сборными элементами – 4-6 см, а для вибрирования бутовой кладки – 1-3 см.

Водоудерживающая способность – это свойство растворной смеси сохранять воду при укладке на пористое основание, что необходимо для сохранения подвижности смеси, предотвращения расслоения и хорошего сцепления раствора с пористым основанием. Водоудерживающую способность увеличивают путем введения в растворную смесь неорганических дисперсных (состоящих из мелких частиц) добавок и органических пластификаторов. Смесь с этими добавками отдает воду пористому основанию постепенно, при этом он становится плотнее, хорошо сцепляется с кирпичом, отчего кладка становится прочнее. Удобоукладываемую растворную смесь получают, если правильно назначен зерновой состав ее твердых составляющих, определяемой соотношением песка, вяжущего и дисперсной добавки. Тесто вяжущего заполняет пустоты между зернами песка и равномерно покрывает песчинки тонким слоем, уменьшая внутреннее трение. С удобоукладываемой растворной смесью удобно работать, в результате повышается производительность труда. От удобоукладываемости растворной сети зависит качество каменной кладки. Правильно подобранная растворная смесь заполняет неровности, трещины, углубления в кирпиче или камне, поэтому получается большая площадь контакта между раствором кирпичом (камнем), в результате прочность и монолитность кладки возрастает. Увеличивается долговечность стен.

Основным свойством строительных растворов являются: прочность (марка) к заданному сроку твердения, сцепление с основанием, морозостойкость и Деформативные характеристики: усадка в процессе твердения, влияющая на трещиностойкости, модуль упругости, коэффициент Пуассона.

Прочность при сжатии определяют испытанием образцов-кубиков с длиной ребра 7,07 см в возрасте, установленном в стандарте или технический условиях на данный вид раствора. Изготовление образцов из растворной смеси подвижностью менее 5 см производят в обычных формах с поддоном, а из смеси с подвижностью 5 см и более – в формах без поддона, установленных на основании-кирпиче (покрытой смоченной водой газетной бумагой).

Прочность смешанных растворов зависит от количества введенной в раствор извести или глины. Оптимальная добавка известкового или глинистого теста, позволяющие получить удобоукладываемые растворные смеси и плотные растворы, соответствует максимуму на кривых прочности (см. В.Г. Микульского Строительные материалы, с. 307 — график влияния дисперсных добавок (извести, глины) на прочность растворов состава (цемент : песок 1-1; 2-1:4; 3-1:5; 4-1:6; 5-1:9) для растворных смесей разного состава – от жирных 1:3 до «тощих» состава 1:9; состав указан в объемных частях – цемент : тесто : песок.

На основании Закономерностей, управляющих прочностью растворов, составлены таблицы рекомендованных составов разных марок, которыми широко пользуются на практике.

Строительные растворы по прочности в 28-суточном возрасте при сжатии делят на марки: 4, 10 25, 50, 75, 100, 150, 200. Растворы марок 4 и 10 изготовляют на воздушной и гидравлической смеси и др.

Понижение температуры замедляет рост прочности растворов.

Следовательно при низких положительных температурах прочность раствора в возрасте 28 сут составляет 55-72% от марки.

Поэтому в зимнее время широко применяют растворы с химическими добавками (поташа, нитрата натрия) понижающим температуру замерзания раствора и ускоряющими набор его прочности. Зимой марку раствора для каменной кладки (без тепляков) и монтажа крупнопанельных стен обычно повышают на одну ступень против марки при летних работах (например, 75 вместо 50).

Морозостойкость раствора характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают насыщения водой стандартные образцы-кубики размером 7,07х7,07х7,07 см (допускается снижение прочности образцов не более 25% и потеря массы не свыше 5%).

Строительные растворы для каменной кладки наружных стен и наружной штукатурки имеют марки по морозостойкости: F10, F15, F25, F35, F50, причем марка повышается для влажных условий эксплуатации. В таких условиях растворы удовлетворяют и более высоким требованиям по морозостойкости: F 100, F 150, F 200, F 300. Морозостойкость растворов зависит от вида вяжущего вещества, водоцементного отношения, введенных добавок и условий твердения.

 

Классификация строительных растворов

По плотности в сухом состоянии растворы делят: на тяжелые сплотностью 1500 кг/м3 и более, для их изготовления применяют тяжелые кварцевые или другие пески; легкие растворы, имеющие плотность менее 1500 кг/м3 , заполнителями в них являются легкие пористые пески из пемзы, туфов, шлаков, керамзита и других легких мелких заполнителей.

По виду вяжущего строительные растворы бывают: цемент­ные, приготовленные на портландцементе или его разновиднос­тях; известковые — на воздушной или гидравлической извести, гипсовые — на основе гипсовых вяжущих веществ — гипсового вяжущего, ангидритовых вяжущих; смешанные — на цементно-известковом вяжущем. Выбор вида вяжущего производят в зависимости от назначения раствора, предъявляемых к нему требований, температурно-влажностного режима твердения и условий эксплуатации здания или сооружения.

По назначению строительные растворы делят: на кладочные для каменных кладок и кладки стен из крупных элементов; отделочные для штукатурки, изготовления архитектурных деталей, нанесение декоративных слоев на стеновые блоки и панели; специальные, обладающие некоторыми ярко выраженными или особыми свойствами (акустические, рентгенозащитные, тампонажные и т.д.). Специальные растворы имеют узкое применение.

По физико-механическим свойствам растворы классифицируют по двум важнейшим показателям: прочности и морозостойкости, характеризующим долговечность раствора. По величине прочности при сжатии строительные растворы подразделяют на восемь марок: 4, 10, 25, 50, 75, 100, 150 и 200. Растворы М4 и 10 изготовляют на местных вяжущих (воздушной и гидравлической извести и др.). По степени морозостойкости в циклах замораживания растворы имеют девять марок морозостойкости: от F10 до F300.

Состав раствора обозначают количеством (по массе или объему) материалов на 1 м3 раствора или относительным соотношением (также по массе или объему) исходных сухих материалов. При этом расход вяжущего принимают за 1. Для простых растворов, состоящих из вяжущего и не содержащих минеральных добавок (цементных или известковых растворов) состав будет обозначен, например, 1:6, т. е. на 1 ч. вяжущего приходится 6 ч. песка. Состав смешанных растворов, состоящих из двух вяжущих или содержащих минеральные добавки, обозначают тремя цифрами, например 1:0,4:5 (цемент:известь:песок). Однако следует учитывать, что в цементных смешанных растворах за вяжущее принимают цемент совместно с известью.

В качестве мелкого заполнителя применяют: для тяжелых растворов — кварцевые и полевошпатовые природные пески, а также пески, полученные дроблением плотных горных пород; для легких растворов — пемзовые, туфовые, ракушечные, шлаковые пески. Для обычной кладки кирпича, камней правильной формы, в том числе и блоков, наибольший размер зерен песка не должен превышать 2,5 мм; для бутовой кладки, а также замоноличивания стыков сборных железобетонных конструкций и для песчаного бетона — не более 5 мм; для отделочного слоя штукатурки— не более 1,2 мм.

Минеральные и органические добавки применяют для получения удобоукладываемой растворной смеси при использовани портландцементов. В качестве эффективных минеральных добавок в цементные растворы вводят известь в виде теста. Добавка извести в цементных растворах повышает водоудерживающую способность, улучшает удобоукладываемость и дает экономию цемента. В качестве неорганических дисперсных добавок применяют активные минеральные добавки — диатомит, трепел, молотые шлаки и т. д.

Поверхностно-активные добавки используют для повышения пластичности растворной смеси и уменьшения расхода вяжущего, вводят в растворы десятые и сотые доли процента от количества вяжущих. В качестве поверхностно-активной органической добавки применяют сульфитно-дрожжевую бражку (СДБ), гидролизированную боенскую кровь (ГК), мылонафт, гидрофобнопластифицирующую добавку «флегматор» и др.

Требования к качеству вяжущих, заполнителей, добавок и воды такие же, как и к материалам, применяемым для приготовления бетонов.

Применение строительных растворов

  • Цементные растворы нередко используются в каменной и кирпичной кладке в случаях, когда конструкция расположена ниже уровня подпочвенных вод, а также для оштукатуривания цоколей, наружных стен, карнизов, заливания стяжек пола. Для помещений с влажностью выше 60% это оптимальный тип строительного раствора.
  • Глиняные смеси обычно используют как кладочные — для труб, очагов и печей, а также для наземной части строений, не подверженной воздействию влаги. Пластичность материала обуславливает малую степень усадки, однако и твердеет такой состав относительно медленно.
  • Сложные растворы — в состав которых входит несколько типов вяжущих веществ — наиболее популярны благодаря тому, что они обладают достоинствами смесей на основе различных компонентов. Они также обладают более высокой прочностью по сравнению с простыми растворами и широко используются для кладочных и штукатурных работ. Наиболее часто в данной категории находят применение цементно-известковые смеси.

Специальные строительные растворы

  • Для заполнения швов в сборных железобетонных конструкциях используют составы на основе цемента и кварцевого песка без применения добавок, провоцирующих развитие коррозии (СНиП 2.03.11-85), подвижность их составляет 7–8 см. Маркировка применяемого раствора должна соответствовать маркировке бетона, из которого изготовлены соединяемые элементы.
  • Инъекционные растворы содержат в своем составе цемент и песок и применяются для заполнения каналов предварительно напряженной конструкции. Их прочность соответствует маркам М300 и выше. Также материал отличается водоудерживающей способностью и морозостойкостью. Для уменьшения вязкости строительной смеси данного типа могут использоваться мылонафт или присадки СДБ.
  • В состав гидроизоляционных растворов входят цемент марок М400 и выше и кварцевый или искусственный тяжелый песок. Если изготовленные из такого материала конструкции будут подвержены воздействию агрессивной среды, в них также добавляют сульфатостойкий портландцемент — обычный или пуццолановый. Для обеспечения водонепроницаемости швов и стыков раствор замешивают на воднепроницаемом расширяющемся цементе.
  • Тампонажные растворы необходимы для тампонирования скважин. Все типы данной категории составов быстро схватываются и обладают высокой водоотдачей. Заполняя пустоты и трещины в горной породе, они способны противостоять напору подземных вод и проявлять устойчивость к воздействию агрессивной среды. В зависимости от условий, в которых будет использоваться раствор, он может быть изготовлен на основе пуццоланового, сульфатостойкого портландцемента или шлакопортландцемента — для агрессивных сред — или на основе тампонажного портландцемента — если воды напорные.
  • Акустические растворы обладают звукопоглощающими свойствами и используются для оштукатуривания стен. В качестве вяжущих в них добавляют гипс, портландцемент, известь или их смесь, а также каустический магнезит. В роли наполнителя выступает легкий песок фракцией 3–5 мм из шлака, пемзы, керамзита и других веществ.
  • Рентгенозащитные растворы также применяются для штукатурных работ — в рентген-кабинетах. Вяжущие в них — цемент и портландцемент, а наполнители — измельченный барит и другие тяжелые горные породы. Также в состав материала включают литий, водород и кадмий.

Песок и глина в строительных растворах

Пески-заполнители бывают природные (тяжелые) — кварцевые, полевошпатные — либо искусственные. Крупность песков должна соответствовать толщине шва и характеру кладки. Так, для бутовой кладки применяют песок с зернами не крупнее 5 мм, а для кирпичной — не крупнее 3 мм. Зернистость песка приблизительно определяют на ощупь. Размеры зерен крупного песка более 2,5 мм, среднего — от 2 до 2,5 мм, мелкого — менее 1,5 мм. В строительных растворах заполнители обычно занимают 60-65% объема. Для растворов марок 25 и 50 допускаемая загрязненность песков глиной и пылью не более 10 %, для раствора марки 10 — до 15 %. При необходимости песок промывают. В качестве легких заполнителей применяют пески ракушечные, шлаки котельные и доменные гранулированные, керамзитовый песок. В зависимости от плотности искусственный песок подразделяют на марки по насыпной плотности от 250 до 1100 (цифры означают насыпную плотность песка, кг/м3). Глина вводится в известковые и цементные растворы в виде добавки в количествах по объему к цементу 1:1. Добавка глины улучшает зерновой состав, повышает водоудерживающую способность, улучшает удобоукладываемость, увеличивает плотность раствора. Глина состоит из различных минералов, поэтому бывает разного цвета. Различают тощие, средние и жирные глины. Тощие обычно применяют в чистом виде, средние и жирные добавляют в раствор в меньшем количестве.

Приготовление кладочных строительных растворов

Кладочный раствор можно готовить в бетономешалке емкостью 0,15 м3 либо вручную. Цементный раствор готовят практически аналогично бетону. В металлический либо деревянный ящик из досок толщиной 25–30 мм с обитым кровельным железом днищем размерами 1×0,5 м или 1,5×0,7 м и высотой 0,2–0,25 м сначала засыпают ровным слоем необходимое количество ведер песка, сверху — полное ведро цемента. Далее смесь перелопачивают до однородной по цвету массы, поливают из лейки отмеренным количеством воды и продолжают перелопачивать до получения однородного состава. . Приготовленный раствор должен быть израсходован в течение 1,5 часов, чтобы он не потерял прочности.

Песок для приготовления раствора необходимо предварительно просеять через сито с ячейками 10×10 мм (для каменной кладки). О соотношении песка и цемента для растворов и штукатурки читайте — Здесь. Раствор из известкового теста готовят сразу, перемешивая его с песком и водой до однородного состава. Цементно-известковый раствор готовят из цемента, известкового теста и песка. Известковое тесто разводят водой до густоты молока и процеживают на сите с ячейками 10×10 мм. Из цемента и песка готовят сухую смесь, затворяют известковым молоком до требуемой густоты (консистенции теста). Цементно-глиняный раствор готовят аналогично цементно известковому.

Отделочные растворы.

Различают отделочные растворы — обычные и декоративные.

· Отделочные растворы приготовляют на цементах, цементно-известковых, известковых, известково-гипсовых вяжущих. В зависимости от области применения отделочные растворы делят на растворы для наружных и внутренних штукатурок. Составы отделочных растворов устанавливают с учетом их назначения и условий эксплуатации. Эти растворы должны обладать необх­одимой степенью подвижности, иметь хорошее сцепление с основанием и мало изменяться в объеме при твердении, чтобы не вызывать образования трещин штукатурки.

ПОХОЖИЕ СТАТЬИ:

  • Швеллер 10: характеристики,размер,вес,масса,виды,фото,видео.
  • Водонепроницаемый бетон: описание,виды,характеристики,фото,видео.
  • Лаки полиуретановые — виды,характеристики.
  • Романцемент: прочность,описание.
  • Что значит марка кирпича?
  • Водонепроницаемые сумки для инструментов с алиэкспресс
  • Кладочные смеси: описание,марки,кладка,приготовление,расчет,фото,видео.
  • Теплоизоляционные материалы: виды,описание,фото,свойства
  • Сэндвич панели:описание,виды,размер,предназначение,фото,применение
  • Краска акриловая: изготовление,виды,цвета,фото,производители
  • Пенополистирол: виды,фото,описание,применение,характеристики
  • Саморезы кровельные:описание,виды,назначение

building-ooo.ru

Добавить комментарий