Подсоединение батарей: Способы и схемы подключения радиаторов отопления: как правильно провести монтаж

Содержание

Как правильно подключить батарею отопления в квартире

При устройстве системы обогрева коттеджа или квартиры важным моментом является оптимальное размещение отопительных приборов и присоединение их к магистральным трубопроводам. Эти аспекты, как и выбор схемы, следует продумать заранее, поскольку они влияют на эффективность обогрева. В данной статье мы расскажем о том, как правильно подключить батареи отопления и каким образом это влияет на их теплоотдачу.

Где лучше установить радиатор?

Этот вопрос немаловажен, ведь перед подключением батарею нужно установить и закрепить в определенном месте. Всем известно, что обычно отопительные приборы стоят под окнами, но почему так делается, люди начинают интересоваться, лично занимаясь организацией обогрева жилища и при монтаже батарей в квартирах или загородных домах. Дело в том, что сквозь окно в комнату поступает гораздо больше холода, чем сквозь наружные стены. Холодный воздух от окон сразу опустится в нижнюю зону и станет стелиться по полу, вызывая чувство холода, если на его пути не поставить нагреватель.

Если правильно поставить батарею под световым проемом, чтобы ее длина составляла от 70 до 90% от ширины окошка, то холодный воздушный поток от него будет сразу же прогреваться. При этом рекомендуется высоту нагревателя принимать как минимум на 110 мм меньше, чем расстояние от подоконника до пола, чтобы при его монтаже снизу остался просвет минимум 60 мм, а сверху – 50 мм. Минимальный отступ от внутренней поверхности – 25 мм.

В угловых комнатах, где имеется дополнительная наружная стена и тепловые потери гораздо выше, следует поставить и подключить радиатор не только под окном, но и возле холодной стены. Его задача — компенсировать теряемое боковой ограждающей конструкцией тепло. Высота установки в данном случае не играет решающей роли, надо просто ориентироваться по уровню батарей, стоящих под окнами.

В угловых комнатах нужно верно распределить мощность радиаторов, что будут стоять под окнами и возле стены. Для этого нужно заблаговременно рассчитать потери тепла через световые проемы и наружные ограждения помещения.

Способы присоединения радиаторов

После того как нагреватели подобраны по мощности и размещены по местам, пришло время осуществить соединение всех радиаторов с магистральными трубопроводами, подающими теплоноситель. Независимо от того, какая выбрана схема, — одно – или двухтрубная, существуют следующие методы присоединения нагревателей:

  • разносторонний диагональный;
  • разносторонний нижний;
  • односторонний боковой;
  • односторонний нижний.

Все вышеперечисленные схемы подключения радиаторов в квартире либо частном доме изображены на рисунке в том же порядке:

Разберем каждую схему поподробнее, каждая из них имеет свои особенности. Разностороннее диагональное подключение считается одним из самых эффективных, потому что все части прибора в этом случае прогреваются равномерно, интенсивно отдавая тепло в комнату. Это происходит внутри нагревателя следующим образом:

Диагональное подключение

Тем не менее схема имеет свои недостатки:

  1. Протоку воды создается наименьшее сопротивление, в связи с чем вода протекает через батарею, не успевая отдать всю свою тепловую энергию. Следовательно, лучше применять диагональное подсоединение при количестве секций свыше 10.
  2. Не очень хорошо выглядит с точки зрения интерьера как при врезке в вертикальный стояк, так и при подводках к трубам, проложенным горизонтально внизу или в полу.

Вторая схема подключения батареи часто используется в однотрубных системах, называемых «ленинградка». Хотя разносторонние нижние подводки актуальны и при двухтрубных системах, так как они просты в монтаже и выглядят более эстетично. Но вот с прогревом всех частей батареи дела тут обстоят хуже:

Нижнее подключение

Видно, что со стороны подачи теплоносителя плохо нагревается ближний верхний угол батареи, а это влияет на величину общей теплоотдачи прибора. Ее значение становится равным 86—88% от заявленной мощности. Если вы являетесь сторонником такого подсоединения, то вам придется учесть сниженную теплоотдачу отопительного прибора.

Очень популярно одностороннее боковое соединение батарей отопления по схеме №3. Используется во всех типах систем для врезки в вертикальный стояк квартиры или горизонтально проложенные трубы. Равномерность нагрева поверхности прибора сохраняется при небольшом количестве секций (до 10). Когда секций больше, то появляется холодная зона в верхнем дальнем от подающего патрубка углу, поэтому при таком раскладке лучше следовать схеме №1.

Схема №4, где подключение отопления осуществляется снизу, обрела популярность в последние годы, когда на рынке появились соответствующие изделия с размещенными на нижней стороне нагревателя подающей и обратной подводками:

В этих моделях вода по одной из секций поднимается в верхний горизонтальный коллектор батареи, после чего растекается по остальным частям, нагревая их достаточно равномерно. Однако, при большом количестве секций придется мириться с недогревом дальнего верхнего угла батареи. Чтобы этого избежать, лучше поставить вместо одного большого радиатора два поменьше. Одностороннее подключение батарей по схеме №4 актуально для любых систем с горизонтальной нижней разводкой и удовлетворит самые высокие требования к интерьеру. Его недостаток – более высокая стоимость оборудования по сравнению с предыдущими способами.

Рекомендации по подключению

Осуществлять монтажные работы по присоединению отопительных приборов несложно, стоит только соблюдать ряд рекомендаций:

  1. На подводках к радиатору всегда надо ставить запорную и регулирующую арматуру. Это нужно не только для балансировки, в которой нуждается каждая система отопления, но и чтобы обеспечить возможность снятия батареи для промывки, замены и так далее. С этой же целью подключение подводок лучше сделать с помощью «американок».
  2. По возможности использовать готовые комплекты для сборки и подсоединения нагревателей. Это позволит не только быстро и надежно смонтировать отопление, но и придаст ему надлежащий эстетический вид.
  3. Для лучшего выпуска воздуха при закреплении батареи к стене соблюдать не видимый глазу уклон в сторону, противоположную крану Маевского.
  4. Для систем «ленинградка» использовать специальные врезные клапаны, что позволяют воде равномерно прогревать прибор, как показано на рисунке:

Врезной клапан

Заключение

Когда нет высоких требований к интерьеру комнаты, то небольшие радиаторы лучше подключать сбоку с одной стороны, а большие – по диагонали. Если детали интерьера важны, то правильно подключить батарею с помощью дополнительного комплекта аксессуаров. Нижний разносторонний метод – это на любителей, поклонников схемы «ленинградка».

Возможные схемы подключения радиаторов Ogint, необходимые комплектующие для однотрубной и двухтрубной системы подключения

Эффективность системы отопления определяется правильностью подбора необходимого оборудования и схемы его подключения.

ТМ Ogint предлагает большой выбор радиаторов, трубопроводной арматуры и комплектующих. Широкий ассортимент оснащения позволяет подобрать все необходимые детали и элементы для прокладки и подключения различных систем отопления. Наши менеджеры помогут вам с оформлением заказа и подбором необходимых комплектующих, какую бы схему подключения вы ни выбрали. Для оптовых покупателей — существенные скидки и акции.

Нюансы и преимущества двухтрубной системы

Один из востребованных вариантов — двухтрубная схема. В этом случае радиаторы присоединяются к сети отопления с помощью двух магистралей: одна служит для транспортировки горячего теплоносителя, а вторая — для оттока остывшей воды. Популярность двухтрубной схемы подключения батарей обусловлена следующими факторами:

  • возможностью использования отопительного оборудования для разного вида топлива;
  • одинаковой температурой радиаторов, независимо от их удаления от источника тепла;
  • вероятностью корректировки степени нагрева отдельных батарей и установки комфортной температуры в помещении.

В зависимости от способа монтажа двухтрубная система отопления бывает вертикальной и горизонтальной, а присоединение радиаторов осуществляется снизу, сбоку или по диагонали. Самым распространенным является боковое подключение, при котором к верхнему патрубку подводится труба с горячим теплоносителем, а к нижнему — с остывшей рабочей средой. Такой способ предусматривает расположение труб по одну сторону от батареи и предполагает минимальную потерю тепла, составляющую не более 5%.

Подключение к вертикальной двухтрубной системе

Вертикальная схема подключения радиаторов чаще используется при прокладке сети отопления в многоэтажных домах. Она предусматривает присоединение всех элементов и приборов системы обогрева к вертикальному стояку и не склонна к образованию воздушных пробок.

Монтаж с помощью ручного и запорного клапанов

Для подключения такой системы помимо труб и радиаторов потребуются ручной и запорный клапан, а также соединительные элементы. Полный перечень необходимых комплектующих деталей представлен в таблице.

Наименование комплектующих элементов Количество, шт.
1 Ручной клапан ДУ 15 — 1/2″ 1
2 Муфта МПЛ (20х2) xG ½”НР 4
3 Клапан запорный ДУ 15 — ½” 1
4 Тройник стальной ¾” ВР x½” ВР х ¾” ВР 2
5 Муфта стальная 1” ВР x1” ВР 2
6 Сгон стальной 1” НР x1” НР 2
7 Труба МПЛ 20x 2 зависит от протяженности сети
8 Контргайка 1&rdquo 2

Подсоединение радиатора к стояку сети отопления осуществляется с помощью муфт, тройников и сгонов. Прочность фиксации трубопроводной арматуры обеспечивается за счет контргайки. Используя стальные муфты, устанавливают ручной и запорный клапаны.

Первый элемент трубопроводной арматуры подсоединяется к верхней трубе разводки сети обогрева и служит для плавной регулировки расхода теплоносителя при его прохождении через отопительный прибор. Запорный клапан подключается на выходе рабочей среды из радиатора и предназначен для балансировки системы. С его помощью осуществляют настройку расхода теплоносителя и ограничивают его доступ. Оба вида клапанов могут выполнять функции запорной арматуры, которая позволяет отключить радиатор от общей сети отопления для проведения ремонтных и профилактических работ.

Монтаж с использованием термостатического клапана

Подключение батарей отопления с применением термостатического клапана позволяет регулировать температуру в помещении и обеспечивает экономный расход тепловой энергии, что позволяет снизить затраты на обогрев. Спецификация необходимого оборудования приведена в таблице.

Для подсоединения радиаторов к стоякам отопительной сети используют стальные тройники, сгоны и муфты. Фиксация трубопроводной арматуры осуществляется с помощью контргайки.

Непосредственно к батареям подключают:

  • Терморегулятор. Он состоит из термостатического клапана и термостатической головки, которые позволяют регулировать температуру воздуха в помещениях и поддерживают ее на заданном уровне с точностью до 1 °C. Монтаж элементов терморегулятора выполняют с помощью муфты, устанавливая клапан и головку на верхней трубе разводки отопительной сети.
  • Запорный клапан. Устанавливается на нижней трубе, по которой перемещается охлажденный теплоноситель. Запорный клапан используют при первичной балансировке отопительной системы. Он служит для монтажной настройки расхода рабочей среды и позволяет перекрывать поток теплоносителя и отключать батареи при проведении профилактических работ или ремонта.

Термостатические клапаны Ogint для вертикальной двухтрубной системы обогрева рассчитаны на функционирование при возможных перепадах давления. Они отличаются повышенным гидравлическим сопротивлением и имеют проходное сечение оптимального размера. Нормативный срок службы изделий составляет до 30 лет при максимальной температуре теплоносителя до +110 °C.

Для эффективного функционирования термостатического клапана его следует устанавливать перпендикулярно панели радиатора. При этом прибор располагают таким образом, чтобы совпадали направления стрелки на корпусе и потока рабочей среды в сети. Во время отключения отопления терморегуляторы для защиты от загрязнений и деформации полностью открывают.

Подключение горизонтальной отопительной магистрали

Сеть отопления с горизонтальным подключением батарей обычно востребована в одноэтажных домах большой площади. Иногда она может использоваться и для обогрева двухэтажных зданий. При монтаже горизонтальной системы стояки располагают в коридорах или на лестничной клетке, а подача теплоносителя осуществляется сверху или снизу.

Первый вариант обеспечивает естественную циркуляцию рабочей среды и не требует дополнительного оснащения. Нижняя подача теплоносителя позволяет скрыть трубы, но нуждается в установке циркуляционного насоса. Систему с естественной циркуляцией можно использовать лишь при заглублении отопительного котла таким образом, чтобы он находился ниже уровня батарей. Радиаторы подключают к сети обогрева с помощью нижней, боковой или диагональной разводки. Для стравливания излишков воздуха при монтаже элементов горизонтальной магистрали на батареях устанавливают краны Маевского.

Другие виды подключения

Подсоединение радиаторов Ogint может также осуществляться путем нижнего подключения. Такой способ целесообразен в малоэтажных частных домах и загородных коттеджах при скрытой прокладке труб отопительной сети под полом. В этом случае потери тепла будут составлять до 10%.

Для нижнего подключения радиаторов Ogint помимо деталей, выпускаемых ТМ, можно использовать узлы Giacomini. Они представлены следующими комплектами оснащения:

  • микрометрической группой с отсечным клапаном с регулируемым байпасом и угловым осевым клапаном;
  • микрометрическим клапаном со встроенным компактным отсечным клапаном.

Оба узла нижнего подключения позволяют регулировать температуру батарей и могут применяться как в однотрубных, так и в двухтрубных сетях отопления.

Радиаторы и комплектующие детали для подключения системы обогрева, выпускаемые ТМ Ogint, производятся в соответствии с требованиями европейских стандартов и отличаются безупречным качеством. Оборудование для сети отопления адаптировано к российским условиям, сохраняя потребительские свойства и технические параметры в течение длительного времени. Для каждого типа радиаторов ТМ предлагает монтажные комплекты, кронштейны и другие аксессуары, упрощающие установку батарей и управление системой.

Три схемы соединения аккумуляторных батарей для электропитания

Аккумуляторные батареи (АКБ) в зависимости от их назначения собираются из определенного количества аккумулирующих энергию элементов. Схема соединения

аккумуляторных батарей при этом зависит от того, какая преследуется цель. Это может быть увеличение емкости батареи, повышение напряжения либо сочетание обеих этих параметрических характеристик устройства.

В основном батареи собирают последовательно-параллельно, а сами сборки служат для промежуточного или резервного хранения электроэнергии

Известны и повсеместно применяются 3 варианта соединения отдельных аккумуляторов в батарею: последовательное, параллельное и смешанное или комбинированное.

Повышение рабочего напряжения батареи

Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.

Схемы и формулы при последовательном соединении батарей

При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.

Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.

Увеличение емкости источника питания

Нередки технические условия, когда от источника питания при сохранении рабочего напряжения требуется повышенная емкость. В таких случаях для комплектования батареи применяется параллельное соединение аккумуляторов. Такой способ коммутирования позволяет в разы, а в особо ответственных случаях – в десятки раз увеличить суммарную емкость питающего устройства.

Параллельное соединение батарей с формулами

Параллельное соединение осуществляется путем коммутации однополюсных выводов источников тока: плюсовой и минусовой выводы предыдущего аккумулятора соединяются с одноименными выводами последующего. Суммарная электрическая емкость скомпонованной таким способом коммутации батареи будет равна сумме электрических емкостей входящих в схему отдельных источников. Это значит, что при соединении трех аккумуляторных батарей с номинальной емкостью 60 А*ч получится устройство, имеющее электрическую емкость 180 А*ч.

В качестве примера подключения аккумуляторных батарей параллельной коммутацией можно привести источники бесперебойного либо аварийного питания приборов и аппаратуры. Параллельно подключаются АКБ большегрузных автомобилей и тяжелой специальной техники с большим объемом двигателя. Большой распространение параллельная коммутация получила на флоте: здесь параллельно соединенные устройства питания применяются для запуска вспомогательных дизелей, работы освещения, систем связи и жизнеобеспечения в аварийных ситуациях.

Повышение напряжения с одновременным увеличением емкости АКБ

Ярким примером смешанного или комбинированного соединения аккумуляторов в комплекс с необходимыми показателями рабочего напряжения и электрической емкости служат источники питания машин с электрическим приводом.

ВАЖНО! При увеличении емкости аккумуляторных батарей увеличиваются и токи. Правильно подбирайте сечения проводов! Используйте негорючие или самозатухающие провода.

Тяговые аккумуляторные батареи для обеспечения работы приводных и управляющих двигателей электроприводных машин и механизмов комплектуются именно по такой схеме. Достаточно подробно о способах соединения АКБ изложено в этом видео:

Комбинированное соединение подразумевает использование в коммутационной схеме одновременно последовательного и параллельного способов подключения. Возможны два варианта:

1. Сначала методом последовательного соединения источников подготавливаются батареи с требуемым рабочим напряжением. На втором этапе параллельно коммутируется необходимое количество подготовленных сборок для обеспечения потребной электрической емкости.

2. Во втором варианте параллельной коммутацией предварительно набираются батареи с требуемой емкостью. После этого устройства соединяются последовательно до достижения необходимого рабочего напряжения.

Схема последовательно-параллельного соединения аккумуляторных батарей наиболее часто применяемая, так как современные батареи для автономного энергообеспечения домов имеют номинальное напряжение 3,4 В

Комплектование АКБ комбинированным способом позволяет формировать источники питания, напряжение и электрическая емкость которых ограничивается только занимаемым ими рабочим пространством.

Особенности комплектования батарей аккумуляторов

Все три способа соединения отдельных источников питания в комплекс подчиняются не сложным, но важным для эффективной и долгосрочной эксплуатации правилам.

Последовательно-параллельная схема подключения на примере литий-ионных батарей

Пролонгированная работа батареи и ее экономическая целесообразность может быть обеспечена при соблюдении следующих правил:

  • электрическая емкость включаемых в комплекс источников не должна отличаться на величину, превышающую 5% от номинальной;
  • рабочие напряжения отдельных элементов батареи должны находиться в разумном соотношении;
  • эксплуатационное техническое состояние включаемых в комплекс автономного питания элементов должно быть максимально сбалансированным;
  • сечение коммутационных линий и шин должно быть рассчитано с учетом токовых нагрузок как внутри батареи, так и во внешних электрических цепях.

Ассортимент предлагаемых рынком источников питания при грамотном подходе позволяет создавать аккумуляторные батареи со всеми необходимыми для надежного использования характеристиками.

Подключение радиаторов отопления в Москве — заказать услуги мастера по установке и подключению биметаллических батарей отопления

Произвести подключение радиаторов отопления качественно, с минимальными материальными и временными затратами возможно, воспользовавшись удобной онлайн платформой Юду, предназначенной для размещения большого количества предложений от исполнителей, имеющих различную специализацию. С помощью нашего сервиса срочное подключение батарей отопления предлагают сотни мастеров, прошедших строгую проверку администрацией, поэтому их поиск не займет у вас много времени.

Виды батарей отопления

Солидный опыт работы в предоставлении услуг по монтажу приборов отопления вкупе с наличием специального оборудования предоставляет специалистам, зарегистрированным на нашем сервисе, возможность выполнять установку и подключение радиаторов различных видов:

  • биметаллических;
  • алюминиевых;
  • чугунных;
  • стальных.

Также вы можете рассчитывать на получение профессиональной консультации по выбору типа отопительного оборудования с учетом ваших требований и габаритов того или иного помещения в 3-х комнатной квартире бесплатно.

Как подключить биметаллические батареи отопления?

Батареи, выполненные из современного биметалла, отличаются небольшим весом, высокой теплоотдачей и стильным дизайном, который позволяет производить их монтаж в любом помещении. Мастера осуществляют подключение биметаллических радиаторов отопления согласно требованиям СНиПа в несколько этапов:

  • Демонтаж старых батарей отопления
  • Установка кронштейнов, предназначенных для крепления радиаторов. Их количество зависит от числа секций батареи
  • Подсоединение подводящих и отводящих теплопроводов к радиатору
  • Монтаж воздушного клапана
  • Первый запуск отопительной системы для проверки ее работоспособности и правильности сборки.

На подключение биметаллических радиаторов отопления к общей системе отопления под ключ мастерами Юду предоставляется гарантия.

Как подключить алюминиевые радиаторы отопления?

Алюминиевые радиаторы отопления отличает современный дизайн и высокие показатели теплоотдачи. Во избежание проблем и достижения оптимальных качественных характеристик, специалисты при подключении алюминиевых радиаторов отопления выполняют работу с учетом следующих установочных размеров:

  • монтаж радиатора осуществляется на расстоянии от 60 до 100 мм от пола;
  • расстояние от стены до батареи не должно быть меньше 20-50 мм;
  • расстояние от подоконника до самой верхней части радиатора должно быть не менее 10 см.

Почему стоит заказать подключение радиатора отопления на Юду?

Воспользоваться онлайн платформой Юду вы можете в любое удобное время, получив при этом неограниченное количество предложений от профессионалов. Для этого укажите в своей заявке, что именно вы хотите получить от подключения радиатора и назовите свою цену на услуги. При этом вы гарантированно получаете:

  • возможность самостоятельно выбрать мастера, ориентируясь на отзывы и его рейтинг;
  • возможность подключить батареи отопления в любое удобное время;
  • возможность получить качественные услуги по приемлемой цене.

Подключение батарей отопления

Типы подключения батарей

Подключение радиаторов (батарей) отопления существуют три основных типа:
1 — диагональное,
2 — боковое
3 — нижнее (ленинградка)
Давайте рассмотрим все три.

Условные обозначения к схемам:
1 – Кран Маевского
2 – Нагревательные устройства (радиаторы, батареи)
3 – Направление движения теплоносителя (теплопоток)
4 – Заглушка

Схема диагонального подключения батарей (радиаторов).

Когда производители батареи (радиатора) указывают тепловую мощность своего изделия, то они имеют в виду именно такой тип подключения. Диагональное подключение обеспечивает максимальную теплоотдачу нагревательного устройства.

Схема бокового подключения батарей (радиаторов)


По сравнению с диагональным, боковое  подключение проигрывает в теплоотдаче от двух до пяти процентов.

Схема нижнего подключения батарей (радиаторов)

Это подсоединение в народе еще называют «ленинградкой», от диагонального его потери составляют от 10 до 15 % мощности теплоотдачи. Сразу уточним, что потери бокового и нижнего подключения следует учитывать только при значительной длине трубопровода. То есть при автономном (индивидуальном) отоплении эти потери ничтожно малы и как правило не учитываются.

Видео пояснение по подключению радиаторов

Примеры подключения батарей (радиаторов)

Схема  подключения батарей (радиаторов) в системе отопления с природной циркуляцией теплоносителя:

Увеличить рис.

1 — Котел
2 — Переливной патрубок
3 — Расширительный бачек
4 — Трубопровод подачи (подача)
5 — Вентиля регулировки отопления и воданагрева  на каждое нагревательное устройство
6а — Диагональное подключение батареи
6б — Боковое подключение батареи
7 — Обратный водопровод (обратка)
8 — Канализационный слив
9 — Вентиль для слива води с  системы отопления
10 — Вентиля регулировки отопления и воданагрева для всей системы
11 — Вентиль для подпитки системы водой
12 — Фильтр тонкой механической очистки
13 — Кран Маевского

Однотрубная схема подключения батарей (радиаторов) в системе отопления с принудительной циркуляцией теплоносителя:

Увеличить рис.

1 — Котел
2 — Переливной патрубок
3 — Расширительный бачек
4 — Циркуляционный насос
5 –  Вентиль для слива води с  системы отопления
6 — Трубопровод подачи (подача)
7 — Кран Маевского
8а — Диагональное подключение батареи
8б — Нижнее подключение батареи
8в — Боковое подключение батареи
9 — Обратный водопровод (обратка)
10 — Канализационный слив
11 — Вентиль для подпитки системы водой
12 — Фильтр тонкой механической очистки

Двухтрубная схема подключения батарей (радиаторов) в системе отопления с принудительной циркуляцией теплоносителя:

Увеличить рис.

1 — Котел
2 — Переливной патрубок
3 — Расширительный бачек
4 — Циркуляционный насос
5 –  Вентиль для слива води с  системы отопления
6 — Трубопровод подачи (подача)
7 — Кран Маевского
8а — Диагональное подключение батареи
8б — Боковое подключение батареи
8в — Нижнее подключение батареи
9 — Обратный водопровод (обратка)
10 — Канализационный слив
11 — Вентиль для подпитки системы водой
12 — Фильтр тонкой механической очистки
13 — Вентиля регулировки отопления и воданагрева  на каждое нагревательное устройство

В последнее время мастера практики советуют ставить вентиля регулировки отопления и воданагрева  на каждое нагревательное устройство не на трубопровод подачи, а на обратный водопровод (обратку), обосновывая это улучшением теплоотдачи в связи с ограничением не поступлением горячего теплоносителя, а оттоком холодного.

Читайте также: Схемы установки отопления

Описание способов подключения батарей отопления

Батареи – это основной элемент системы отопления. Предназначены они для передачи тепловой энергии окружающему воздуху в помещении. Устройство и срок службы как новых типов, так и старых, примерно одинаковый.

Конечно же у всех типов батарей имеются свои плюсы и минусы. Но в этой статье поговорим не о качестве, а о том как и каким способом их подключить.

Относительно современных радиаторов можно сказать следующее: дизайн более привлекателен, почти все радиаторы не требуют покраски, отличаются по весу, габаритам, стоимости и материалу из которого изготовлены.

Цена (при одинаковом или даже лучшем качестве) на отдельные виды современных может быть ниже чем стоимость старого образца, в несколько раз.

Подключая систему отопления с нуля и покупая новое оборудование, лучше остановить свой выбор на современных батареях. Ведь цена почти такая же как и у более старого образца, но плюсы современных радиаторов очевидны.

В тоже время если у вас имеются в наличии радиаторы старого образца, не выбрасывайте их, придайте им более презентабельный вид. Сейчас в продаже полно всяких декоративных решеток и щитов, для украшения. Обычно, при подключении, основное внимание уделяется эстетичности и удобству производимых работ.

А вот на порядок не обращают внмания. И зря!!! Ведь при правильном подключении, появляется возможность для регулировки тепла не только во всем доме, но и в каждой комнате по отдельности.

Вариант выбирайте исходя из таких соображений – место где будет находится(или уже находится) отопительный котел, как расположен дом относительно сторон света, погодные условия вашей местности (в основном берите во внимание ветреность).

Давайте в этой статье рассмотрим три основных варианта подключения батарей:

  1. последовательное;
  2. параллельное;
  3. комбинированное.

Последовательное

При таком подключении увеличивается теплоотдача отдельных элементов, то есть — первая батарея в системе будет нагреваться сильнее. Ввод подключаемой трубы делается с низу радиатора, а выход можно сделать как с низу, так и с верху. Поэтому батареи которые нагреваются сильнее устанавливаем в более холодных комнатах.

Подключение радиаторов производится непосредственно в систему отопления. При таком способе нет возможности самому регулировать температуру батарей, а так же производить замену или обслуживание радиатора не отключая полностью всю систему.

Параллельное

Батареи подключаются при помощи отводов от центральной трубы. Подключение радиаторов можно делать так же как и при последовательном. На все отводы ставятся шаровые краны, для регулирования подачи теплоносителя.

При таком методе подключения, достигается эффект равномерного прогрева всех батарей в системе. Данный эффект используется для устранения не большой разницы температуры, то-есть ставим радиаторы с одинаковым количеством секций и с разным вариантом подключения, в разные по площади комнаты.

Важно: труба между отводами должна быть меньшего диаметра, что бы создавать сопротивление теплоносителю или поставить кран для регулировки давления. Без этого теплоноситель будет двигаться по трубе не поступая в радиатор.

Комбинированное

При таком подключении, комбинируя первые два варианта, если все продумать, можно добиться одинакового прогрева всех комнат в доме (закрывая или открывая краны на трубах добиваемся разной теплоотдачи).

Конечно есть исключения – местность с сильными и холодными ветрами. Таким образом вы сможете делать так, что бы радиатор, к примеру третий от котла был самый горячий, а при обычном (однотрубная система) такое невозможно.

Таким образом, установка кранов до и после батареи позволяет производить их обслуживание не сливая теплоноситель из системы.

Посмотрите видео: Как подключить радиатор отопления с наибольшей эффективностью

Виды подключения радиаторов

Эффективность работы системы отопления, будь это квартира, либо частный дом, сильно зависит от радиаторов. Однако важно понимать, это на эффективность влияет не только материал или разновидность батареи, но и правильное подключение радиаторов отопления. Это нужно для того, чтобы теплоноситель с более высокой температурой постоянно поступал в радиатор и вытеснял более холодный теплоноситель. Ведь если он будет застаиваться, то батарея будет холоднее, а значит и температура в помещении будет ниже. Кроме того, это позволит снизить расход топлива (газа, электричества и др.), если речь идет об отоплении в коттедже.

Наиболее распространенными способами подключения отопления являются:

  • Нижнее;
  • Боковое;
  • Диагональное;
  • Центральное.

Применять их можно вне зависимости от того, является ли система отопления однотрубной или двухтрубной. Также не имеет значения материал, из которого сделаны радиаторы, будь это стальное, чугунное, алюминиевое или медное отопление. Главное, чтобы радиаторы и трубы были изготовлены из одного материала.

Нижняя схема подключения радиаторов

Существует две разновидности подключения труб снизу. Первый из них также называют седальным, он предполагает, что трубы подключаются с противоположных концов радиатора. При другом варианте входное и входная и выходная трубы расположены рядом друг с другом. Если давление в системе достаточно высокое, то за счет вихревых потоков теплоносителей будет циркулировать по всему радиатору.

Еще один плюс такого подключения радиаторов отопления заключается в том, что оно не очень заметное, т. к. трубы можно спрятать с стену или пол.

Нижняя схема подключения не подходит, если у Вас естественная циркуляция теплоносителя в системе. Из-за недостаточного давления вода не будет подниматься вверх, а значит верхняя часть радиатора будет более холодной, что приведет к снижению мощности от теплопотерь от 10 до 20 процентов.

Центральная схема подключения радиаторов

Центральный вариант подключения по сути является подвидом нижнего и предусмотрен только для тех радиаторов, которые имеют разводку под трубы по центру. При должном уровне давления теплоноситель будет распространяться вверх, а потом по сторонам и вниз, равномерно прогревая его.

Боковая схема подключения радиаторов

Этот вариант подключения наиболее распространен в многоквартирных домах с вертикальным стояком отопления, который проходит через все этажи здания. Радиаторы расположены в одном месте и, как следует из названия, соединяются двумя трубами сбоку. Между ними устанавливается специальная перемычка, чтобы радиатор можно было отключить без необходимости перекрывать весь стояк. Лучше всего такое соединение подходит для радиаторов небольшим количеством секций, т. к. по мере удаления мощность будет неуклонно снижаться.

Диагональная система подключения радиаторов

Соединение труб с радиатором по диагонали является одним из наиболее эффективных, т. к. позволяет снизить теплопотери в системе, а теплоноситель равномерно распределяется по радиатору.

Здесь есть два варианта подключения. В первом случае входная труба расположена в верхнем углу, а выходная – в нижнем на противоположной стороне. Она более эффективна. Во втором варианте все наоборот: входная в нижнем углу, а выходная – в противоположном верхнем. Чем больше секций будет иметь радиатор, тем лучше.

Качественную проектировку и установку радиаторов отопления с различными схемами подключения можно заказать в компании KIT-Comfort. У наших квалифицированных специалистов есть солидный опыт работы с различным оборудованием в многоквартирных и частных домах.

Хотите узнать стоимость подключения радиаторов отопления? ЗВОНИТЕ!

Бесплатный Расчет Сметы и Консультация

+7(863)270-93-66

Три основных типа подключения батарей, которые вы должны изучить сегодня [со схемой]

Батареи часто подключаются последовательно и параллельно для получения более высокого напряжения и тока. Батареи могут быть добавлены в трех различных конфигурациях. Сегодня вы узнаете 3 основных типа подключения батарей.

Основы батарей

Что следует знать:

  1. Аккумулятор имеет две клеммы. (ПРОСТАЯ точка)
  2. Анод — это положительный полюс аккумулятора.Обычно анодный вывод обозначается знаком (+) или красным знаком.
  3. Катод — отрицательная клемма аккумулятора. Символ (-) или знак черного цвета обозначают анодный вывод.
  4. Соединительные кабели АКБ для подключения должны быть качественными.
  5. Правильный номер калибра и длина важны для достижения совершенства.

Последовательное соединение

Батареи соединены последовательно для получения более высокого напряжения от заданного количества батарей при постоянном токе.

Процедура: Соедините катод первой батареи с анодом второй. Продолжайте это соединение для всех батарей. Снимите выход с анода первого и катода последнего.

Шаги для последовательного подключения двух батарей

Назовем их B1 и B2.

  1. Подключите катод B1 к аноду B2.
  2. Подключите провод W1 (красный провод) к положительной клемме B1.
  3. Подключите W2 (черный провод) к отрицательной клемме B2.
  4. Возьмите вывод W1 и W2

Это показано на рисунке ниже.

Пример использования:

Представим, что у вас есть две батареи 6 В . Используя вышеуказанное соединение, вы можете получить 12 В .

Шаги для подключения 3 батарей в серии

Назовем B1, B2, B3.

  1. Подсоедините катод B1 к аноду B2.
  2. Подключите катод b2 к аноду B3.
  3. Возьмите положительный выход с анода B1.
  4. Выходной выходной сигнал с катода B3.

Пример использования:

Допустим, B1 = 6 В, B2 = 6 В и B3 = 6 В

Теперь Используя вышеуказанное соединение, вы можете получить 18 В.

Параллельное соединение

Батареи часто подключаются параллельно, чтобы получить дополнительную силу тока, которая является суммой всех параллельно включенных батарей.

Процедура: Подключите все анодные выводы к общему переходу, а все катоды друг к другу на другом выводе.

Шаги для параллельного подключения двух батарей

Назовем их B1 и B2.

  1. Используйте соединительный провод для соединения анода с общей клеммой.
  2. Используйте другой соединительный провод для соединения катода с другой клеммой.
  3. Снимите один вывод с анода.
  4. Снимите второй вывод с катода.

Указанное выше соединение увеличивает текущий выход. Предположим, B1 = 1,5 A и B2 = 1,5 A

Тогда выходной ток = 3 А при постоянном напряжении.

Шаги для параллельного подключения трех батарей

Назовем батареи B1, B2 и B3.

  1. Присоедините анод B1 к аноду B2.
  2. Подсоедините анод B2 к аноду B3.
  3. Возьмите выходной сигнал анода B1.
  4. Повторите вышеуказанное для катода.

Вышеупомянутое соединение суммирует ток, забираемый от батарей. Предположим, B1 = 1,5 A, B2 = 1,5 A и B3 = 1,5 A. Конечный ток = 4,5 A.

Последовательное параллельное подключение батарей

Последовательно-параллельные соединения предназначены для увеличения тока, а также напряжения от данных батарей.Это соединение полезно для удвоения, утроения, четырехкратного увеличения или увеличения напряжения / тока от батарей.

Шаги для последовательного параллельного подключения четырех батарей

Назовем их B1, B2, B3 и B4, и каждый из них имеет номинал 12 В при 1,5 А. Мы готовы получить 24 В при 3 А от обоих. Для этого B1 и B2 подключаются последовательно, B3 и B4 подключаются последовательно друг к другу. Серии B1, B2 идут параллельно с сериями B3, B4.

  1. Подсоедините катод B1 к аноду B2.
  2. Подсоедините катод B3 к аноду B4.
  3. Подключите катод B1 к аноду B3.
  4. Подключите катод B1 к катоду B3.
  5. Снимите выходной сигнал с катода B1 и анода B2.

Как подключить две или более батарей последовательно и параллельно

Последовательное и параллельное соединение батарей



Добро пожаловать в эту информативную статью.

На этой странице мы проиллюстрируем различные типы батарей , используемых в большинстве ветряных и солнечных энергетических систем, и мы научим вас , как соединять их последовательно и параллельно , чтобы получить большую емкость или более высокую номинальное напряжение, в зависимости от ваших потребностей.

Таким образом мы получим отличную систему хранения энергии; энергия, вырабатываемая нашим заводом MPPTSOLAR.

Вы готовы? Давайте начнем!

Выбор правильного типа батареи


На этапе проектирования автономной солнечной энергосистемы важно выбрать правильные батареи, которые будут формировать батарею. На рынке представлено множество типов аккумуляторов. Ниже мы перечислим самые распространенные:

Свинцово-кислотные батареи
Это батареи, используемые для питания электрической системы мотоциклов, легковых и грузовых автомобилей.Они дешевы, обеспечивают очень высокие токи, надежны и хорошо работают даже при низких температурах. С другой стороны, они довольно тяжелые, опасные, поскольку свинец — токсичный металл, они теряют емкость из-за механического воздействия и не подходят для слишком длительных разрядов из-за процесса сульфатирования.

Гелевые батареи
Это свинцово-кислотные батареи, в которых электролит не жидкий, а гелеобразный. Их также называют необслуживаемыми батареями, и они обладают большей глубиной разряда.Они также служат в три раза дольше, чем свинцово-кислотные батареи, и выдерживают большое количество циклов заряда-разряда. С другой стороны, они дороже свинцово-кислотных аккумуляторов, и при неправильной загрузке они очень быстро теряют ожидаемый срок службы.

Аккумуляторы AGM
Это свинцовые аккумуляторы, в которых электролит поглощен губчатой ​​массой стекловолокна. Это компактные батареи, устойчивые к коротким замыканиям и очень устойчивые к механическим воздействиям.Они могут быть установлены в любом положении, имеют средний срок службы 10 лет, хорошо работают даже при высоких температурах, а в случае разрушения корпуса утечка кислоты ограничена. У них высокие пусковые токи и низкий саморазряд. С другой стороны, AGM-аккумуляторы стоят дороже гелевых и не рекомендуется разряжать их более чем на 50%.

LiFePO4 батареи
LiFePO4 означает литий-фосфат железа. Эти батареи не содержат свинца или агрессивной жидкости.Поэтому они очень легкие, компактные, экологически чистые и могут быть установлены в любом положении без риска. Даже если они разряжены на 100%, они не повреждаются. При том же размере они накапливают и предлагают больше энергии, чем свинцовые батареи. Кроме того, они могут похвастаться циклами заряда-разряда, недоступными для свинцовых аккумуляторов. Батареи LiFePO4 могут быть заряжены за очень короткое время и обычно оснащены внутренней BMS, которая гарантирует максимальную безопасность и правильную балансировку ячеек. С другой стороны, они по-прежнему стоят намного дороже, чем аккумуляторы AGM.

Как измерить уровень заряда аккумулятора?


Самый точный метод состоит в измерении плотности электролита. Если у вас нет плотномера, благодаря следующей таблице вы сможете узнать состояние заряда свинцовых аккумуляторов, измерив напряжение холостого хода на их выводах с помощью обычного цифрового мультиметра .

Значение плотномера Напряжение на выводах Состояние заряда
1,277 12,73 В 100%
1,258 12,62 В 90%
1,238 12,50 В 80%
1,217 12,37 В 70%
1,195 12,24 В 60%
1,172 12,10 В 50%
1,148 11,96 В 40%
1,124 11,81 В 30%
1,098 11,66 В 20%
1,073 11,51 В 10%

Как подключить несколько батарей вместе?


Прежде всего, важно, чтобы все задействованные батареи были идентичными и имели одинаковый уровень заряда.Во-вторых, важно использовать короткие электрические кабели одинаковой длины и подходящего сечения для подключения батарей. Ниже вы найдете несколько очень четких изображений, чтобы легко понять, как подключена батарея.

Параллельное соединение двух идентичных батарей позволяет увеличить емкость отдельных батарей в два раза при неизменном номинальном напряжении.

Следуя этому примеру, где две батареи 12 В 200 Ач подключены параллельно, у нас будет напряжение 12 В (Вольт) и общая емкость 400 Ач (Ампер-час).

Емкость определяет максимальное количество заряда, которое может быть сохранено. Чем больше емкость, тем больше заряда можно сохранить.

В данном случае это означает, что аккумуляторная батарея емкостью 400 Ач теоретически может выдавать ток 400 А в течение целого часа, или 200 А в течение двух часов непрерывной работы, или 100 А в течение четырех часов и т. Д. доставляется свинцовым аккумулятором, тем дольше он работает.


Соединение двух идентичных батарей серии позволяет получить вдвое большее номинальное напряжение, чем у отдельных батарей, при сохранении той же емкости.

Следуя этому примеру, где есть две батареи 12 В 200 Ач, подключенные последовательно, у нас будет общее напряжение 24 В (Вольт) и неизменная емкость 200 Ач (Ампер-час).

В автономных ветровых и солнечных энергосистемах, чем больше постоянное напряжение для зарядки аккумуляторов, тем меньше энергии теряется по кабелям. Так, например, система на 24 В лучше, чем система на 12 В.


Комбинируя параллельное соединение с последовательным соединением , мы удвоим номинальное напряжение и емкость.

Следуя этому примеру, у нас будет два блока 24 В по 200 Ач, соединенных параллельно, таким образом, образуя общий аккумуляторный блок на 24 В, 400 Ач.

При подключении важно соблюдать полярность, использовать кабели как можно короче и с соответствующим сечением . Чем короче длина соединений, тем меньше сопротивление, которое будет образовываться в кабелях при протекании тока, и, следовательно, меньше будут потери энергии.

При проектировании автономной солнечной энергосистемы очень важно иметь большую и эффективную систему хранения.Чтобы обеспечить правильную зарядку аккумулятора, мы рекомендуем полагаться на качественные и эффективные контроллеры заряда. Контроллеры заряда MPPTSOLAR разработаны, чтобы гарантировать лучший процесс зарядки для любого типа аккумулятора (включая LiFePO4), используя всю энергию, производимую солнечными панелями, благодаря технологии MPPT.

Для тех, кто хочет преобразовать постоянное напряжение батареи в переменное для бытового использования, синусоидального инвертора достаточно для питания любого устройства. Существует два типа: модифицированный синусоидальный инвертор (подходит для резистивных и емкостных нагрузок; он может создавать шум при индуктивных нагрузках) и чисто синусоидальный инвертор (подходит для всех нагрузок).

Соединение батарей вместе — последовательное, параллельное и последовательное / параллельное объединение

Соединение батарей или элементов часто требуется, когда вы хотите увеличить напряжение или силу тока или и то, и другое для различных приложений. Соединяя две или более батарей / элементов вместе, вы создаете так называемый аккумуляторный блок, который дает вам больше энергии для ваших приложений.

Существует 3 метода подключения батарей и построения батарейного блока: последовательный, параллельный и последовательный / параллельный комбинированный.Мы кратко опишем каждый метод с помощью иллюстраций, чтобы дать вам четкое представление.

Что нужно знать перед тем, как соединять батареи вместе?

Перед созданием батарейного блока убедитесь, что вы следуете приведенным ниже советам:

  • Используйте батареи одинакового размера (одинаковое напряжение и одинаковую силу тока)
  • Не смешивайте старую батарею (слабую) с новой (причины дисбаланс зарядки)

# 1 Параллельное подключение батареи — увеличение силы тока (емкости)

Параллельное подключение батареи используется, когда вы хотите увеличить силу тока (емкость) и сохранить напряжение на том же уровне.Поясним этот метод на примере!

Этот метод используется, когда вы хотите, чтобы ваше приложение работало дольше между зарядками. Напряжение остается неизменным при параллельном подключении аккумуляторов. На рисунке ниже вы видите 4 батареи, подключенные параллельно, положительный (+) вывод первой батареи соединен с положительной (+) клеммой второй батареи… до конца, а отрицательная (-) клемма первой батареи подключен к отрицательной (-) клемме второй батареи и так далее.

Параллельное подключение батареи, любезно предоставлено EngineeringPassion

В результате будет получена емкость 12 В, 80 Ач. При увеличении силы тока до 80 Ач вам может понадобиться сверхпрочный кабель, чтобы кабель не перегорел. Для параллельного подключения требуется минимум 2 батареи. При параллельном подключении батарей вам понадобится перемычка для соединения всех положительных (+) клемм и другая перемычка для подключения отрицательных (-) клемм.

Предпочтительный метод поддержания уровня заряда аккумуляторов заключается в подключении к положительному (+) полюсу на одном конце аккумуляторного блока и отрицательному (-) полюсу на другом конце, как показано на рисунке выше.

# 2 Подключение батареи серии — увеличение напряжения

Эта конфигурация понадобится вам, когда вам нужно увеличить общее напряжение системы. При последовательном подключении батареи увеличивается напряжение, а номинальная сила тока (также известная как ампер-часы) остается неизменной. Поясним этот метод на примере!

Для этого метода вам понадобятся как минимум две батареи одинакового размера и номинала. Последовательное подключение батарей — это когда вы объединяете две или более батарей, соединяя положительную (+) клемму первой батареи с отрицательной (-) клеммой второй батареи.Если бы использовались только две батареи, то у вас был бы кабель, идущий от отрицательной (-) клеммы первой батареи к вашему приложению, и кабель, отходящий от положительной (+) клеммы на второй батарее, ведущей к приложению, как показано на рисунок ниже. Подключение батареи серии

, любезно предоставлено EngineeringPassion

В результате этого подключения будет обеспечена емкость 24 В, 20 Ач. Далее мы объясним другой способ увеличения номинального напряжения и силы тока. Это может показаться запутанным, но мы объясним ниже.

# 3 Комбинированное последовательное / параллельное соединение батарей — увеличение как напряжения, так и силы тока

Для последовательного / параллельного комбинированного соединения вам потребуются как минимум 4 батареи одинакового размера и номинала. Поясним это на примере!

У вас будет два или более банков батарей в последовательной / параллельной конфигурациях батарей. Каждая группа батарей объединяет батареи, настроенные последовательно на желаемое напряжение. Затем банки будут соединены вместе параллельно для увеличения общей пропускной способности системы, как показано на рисунке ниже.Серия

и параллельное комбинированное подключение аккумуляторов, любезно предоставлено EngineeringPassion

Это подключение дает емкость 24 В, 40 Ач. Комбинированное соединение похоже на объединение двух идентичных батарейных блоков вместе.

Какой способ подключения батареи мне выбрать?

Вы можете соединить столько батарей вместе, сколько захотите, но когда вы начинаете собирать путаницу из батарей и кабелей, это может быть очень запутанным, а путаница может быть опасной. Ответ на этот вопрос зависит от приложения.Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи того же номинала. По возможности избегайте смешивания и соответствия размеров батарей.

Вы также можете использовать эти соединения для подзарядки батарей через солнечные панели. Всегда помните о безопасности и следите за подключением аккумулятора. Если это поможет, сделайте схему своих батарейных блоков, прежде чем пытаться их построить.

Подключения аккумулятора | Исследования в области батарей

Влияние этого вируса на рекламную деятельность и содействие развитию бизнеса

По мере того, как мы начинаем возвращаться к работе, неохотно для некоторых в зависимости от комфорта или чего-то другого от работы из дома, продолжаются споры.Есть ли польза от работы в офисе, когда собираются самые свежие новости бизнеса? Стоит ли дискомфорт от перегруженных поездов, когда время, потраченное только на то, чтобы добраться туда и вернуться вечером, можно использовать лучше — даже если это может быть просто стрижка травы? Правила о сохранении дистанции в офисе, если они будут соблюдаться, могут лишить многих преимуществ, которые можно получить при работе с другими людьми, где общение считается важным.

Оптимисты из нас получат утешение от рассказов о возможном V-образном выздоровлении.Другим, особенно руководству, предстоит битва впереди с сокращением денежных средств, доступных для существенного продвижения бизнеса, или, в некоторых случаях, с накоплением неизрасходованных денег, которые теперь нужно использовать с пользой, но « хорошее использование » вызывает беспокойство. когда будущие возвращения Covid-19 возможны и даже случаются в некоторых местах.

Как вы поддерживаете или даже увеличиваете продвижение, когда касса пуста или необходимо внимательно изучить бюджеты с учетом будущего.

Battery Connections может помочь.Мы предлагаем БЕСПЛАТНОЕ место для статей и БЕСПЛАТНОЕ распространение без каких-либо требований по подписке. Ссылки на проблемы можно легко передать вашим клиентам и, в свою очередь, всем их клиентам.

Реклама — наш единственный источник дохода. Игнорируя соблазн увеличить сборы в качестве компенсации, наши ставки сведены к минимуму, чтобы дать компаниям возможность начать «продвижение бизнеса» и поддержать тех, кто поддерживает нас рекламой.

Прежде всего, присылайте свои статьи или новости вместе с иллюстрациями или фотографиями.

Удачи в будущем,
Дон Клири, издатель
[email protected]

Электропроводка блока батарей

— ведущие турбины и решения для электропитания

Электроэнергия, вырабатываемая солнечными и ветряными турбинами, должна храниться, и чем больше система солнечного ветра, тем больше должна быть емкость батареи. Самые большие аккумуляторы глубокого разряда, доступные на рынке сегодня, имеют емкость 250-300 Ач, и этого может быть недостаточно для вашей системы. Если это так, нам нужно соединить несколько батарей вместе, чтобы создать аккумуляторную батарею с большей общей емкостью.Мы также можем изменить напряжение системы с 12 В на 24 или 48 В; это может быть связано с тем, что мы хотим использовать устройства на 24 В или потому, что мы хотим уменьшить потери мощности за счет увеличения напряжения в системе.

Есть несколько способов, которыми вы можете соединить вместе несколько батарей, чтобы создать батарею в соответствии с вашими требованиями. Как правило, при подключении аккумуляторов «последовательно» (т. Е. От + ve к -ve к + ve к -ve) напряжения складываются вместе, но емкость Ач остается прежней; подключение аккумуляторов «параллельно» (т.е.е. -ve к -ve и + ve к + ve) объединяет емкости, но оставляет неизменным напряжение.

Золотые правила с батареями

  • По возможности используйте аккумуляторы того же возраста и марки, заменяя их только в том случае, если им меньше года, поскольку новые аккумуляторы вскоре будут снижены до того же уровня производительности, что и старые.
  • Кабели аккумулятора должны быть одинаковой длины, одинакового размера и как можно более прямыми.
  • Всегда подключайте нагрузки и источники заряда к положительным и отрицательным клеммам на противоположных концах батарейного блока, в противном случае первая батарея сделает всю работу, и блок выйдет из строя и быстро выйдет из строя.
  • Максимальное количество аккумуляторов, подключенных параллельно, — шесть, иначе банк не сможет правильно сбалансировать и, опять же, скоро выйдет из строя.

Подключение параллельного блока батарей:

Батарейный блок, подключенный последовательно:

Комбинированное последовательное / параллельное подключение батарей:

Leading Edge предлагает широкий ассортимент солнечных панелей 12 В постоянного тока , подходящих для батарейных блоков 12 В, 24 В и 48 В.Выбирайте из монокристаллических стеклянных модулей профессионального уровня со сверхвысокими эффективными элементами SunPower для различных промышленных / коммерческих применений и морских солнечных панелей от Solara.

Включив ветряную турбину, вы можете генерировать еще больше энергии круглосуточно, а не только когда светит солнце. Взгляните на наш ассортимент автономных ветряных турбин , произведенных здесь, в Великобритании, выберите ту, которая соответствует вашим требованиям к мощности, или , свяжитесь с нами для получения совета от одного из наших автономных специалистов.

Параллельное подключение аккумуляторов — База знаний BatteryGuy.com

Есть два способа подключения батарей: параллельно и серии . На приведенном ниже рисунке показано, как эти варианты подключения могут обеспечивать разное выходное напряжение и ампер-час.

На рисунках мы использовали герметичные свинцово-кислотные батареи, но концепция подключения блоков верна для всех типов батарей.

Различные конфигурации проводки дают нам разные напряжения или емкости в ампер-часах.

В этой статье рассматриваются вопросы, связанные с параллельной проводкой (например, увеличение емкости в ампер-часах). Дополнительные сведения о последовательном подключении см. В разделе «Последовательное подключение аккумуляторов» или в нашей статье о сборке аккумуляторных батарей.

Параллельное подключение увеличивает емкость только в ампер-часах

Основная концепция заключается в том, что при параллельном подключении вы складываете номиналы батарей в ампер-часах, но напряжение остается неизменным. Например:

  • два 6 вольта 4.Батареи на 5 Ач, подключенные параллельно, способны обеспечить 6 вольт 9 ампер-часов (4,5 Ач + 4,5 Ач).
  • четыре подключенных параллельно 1,2 В 2 000 мАч могут обеспечить 1,2 В 8 000 мАч (2 000 мАч x 4).

Но что произойдет, если вы соедините батареи с разным напряжением и емкостью в ампер-часах параллельно?

Параллельное подключение аккумуляторов разного напряжения

Это большая запретная зона. Батарея с более высоким напряжением будет пытаться зарядить батарею более низким напряжением, чтобы создать баланс в цепи.

  • первичные (одноразовые) батареи — они не предназначены для зарядки, поэтому батарея с более низким напряжением может перегреться, протечь или вздуться, а в экстремальных обстоятельствах, когда напряжения сильно различаются, она может взорваться.
  • вторичные (аккумуляторные) батареи — эти только честно немного лучше. Батарея с более низким напряжением не предназначена для зарядки выше определенной точки, но батарея с более высоким напряжением все равно будет пытаться. Результатом может быть перегрев, протечка или вздутие батареи более низкого напряжения и / или перегрев батареи более высокого напряжения, поскольку она быстро разряжается.Опять же, чем больше разница в напряжении, тем больше вероятность возгорания или взрыва.

Стоит отметить, что многие люди каждый день случайно подключают параллельно батареи разного напряжения. Например:

  • Если смешать марки даже с одинаковым обозначенным напряжением — могут возникнуть проблемы. Из-за разных производственных процессов точное напряжение аккумуляторов разных производителей может незначительно отличаться. Это означает, что батарея на 1,5 В от марки X на самом деле может быть 1.6 вольт, тогда как батарея на 1,5 вольта марки Y могла быть 1,55 вольт. Если бы они были подключены параллельно, вы вряд ли увидите фейерверк, но возникнут другие проблемы.
    • для первичных (одноразовых) батарей — более сильная батарея все равно будет пытаться зарядить более слабую, сокращая срок службы обеих.
    • для вторичных (перезаряжаемых) батарей — более сильная батарея будет заряжать более слабую, истощая себя и тратя энергию.
  • Если вы подключаете аккумуляторные батареи параллельно, и одна из них разряжается, а другие заряжаются — заряженные батареи будут пытаться зарядить разряженную батарею.При отсутствии сопротивления замедлению процесса зарядки заряженные устройства могут перегреться, поскольку они быстро разряжаются, а разряженная батарея может перегреться, поскольку она пытается зарядиться на уровне, намного превышающем его проектные возможности.
  • Если вы смешиваете батареи разного возраста — , старые батареи всегда будут иметь более низкое напряжение, так как все батареи со временем саморазряжаются. Даже аккумуляторные батареи не будут заряжаться до того же уровня, что и новые.

Таким образом, важны следующие рекомендации:

  • С первичными (одноразовыми) батареями — используйте только батареи той же марки и возраста (в идеале из той же упаковки).Если это невозможно, дважды проверьте напряжение каждого блока с помощью вольтметра.
  • С вторичными (перезаряжаемыми) батареями — используйте только батареи той же марки и возраста и убедитесь, что все блоки полностью заряжены, прежде чем подключать их параллельно. Если вы не уверены в состоянии заряда, либо подключите их по отдельности к зарядному устройству, пока зарядное устройство не подтвердит, что они полностью заряжены, либо проверьте напряжение с помощью вольтметра.

Параллельное подключение аккумуляторов разной емкости

Это возможно и не вызовет серьезных проблем, но важно отметить некоторые потенциальные проблемы:

  • Проверьте химический состав аккумуляторов. Например, герметичные свинцово-кислотные аккумуляторы имеют точки зарядки, отличные от точек зарядки свинцово-кислотных аккумуляторов.Это означает, что при одновременной подзарядке двух батарей некоторые батареи никогда не будут заряжены полностью. Результатом этого будет сульфатирование тех, которые никогда не достигнут полного заряда, что сократит их срок службы.
  • Дважды проверьте напряжение — если вы используете батареи с разной емкостью в ампер-часах, весьма вероятно, что напряжения будут другими (даже если напряжение, указанное на этикетках, совпадает). Проверьте это с помощью вольтметра, иначе у вас возникнут проблемы (описано в параллельное подключение батарей разного напряжения выше).

Именно по этим причинам рекомендуется использовать батареи той же марки, напряжения и емкости. Невыполнение этого требования (если у вас нет знаний и инструментов для проверки того, что вы делаете) может создать потенциально опасную цепь.

7129 Серия | Подключение батареи | Межплатные соединители | Разъемы | Линии продуктов | Электронные компоненты и устройства

7129 серии

Прочный тип

Серия 7129 — это соединитель плата-плата, способный проводить большой ток до 10А.Несмотря на то, что это компактный продукт с высотой штабелирования 0,7 мм, шириной 2,2 мм и длиной 5,64 мм, он обеспечивает высокую надежность и плавное соединение за счет прикрепления металлов с обеих сторон, чтобы предотвратить повреждение корпусов изолятора и контактов из-за стыковки. смещенным образом.

Типичные области применения

Смартфон, планшетные ПК / ноутбуки, носимые устройства, DSC / DVC, аудиоплееры и т. Д.

Номер детали Список по количеству позиций:

Технические характеристики

Высота штабелирования 0.7мм
Кол-во позиций Сигнал: 2
Мощность: 4
Стиль подключения Вертикально-Вертикальный
С металлическими язычками
или без них
С участием
PCB
Способ монтажа
SMT
Подача
Номинальный ток DC 0,4A / контакт (сигнал)
DC 10A / 2 контакта (питание)
Номинальное напряжение 30 В постоянного тока / контакт
Выдерживаемое напряжение 250 В переменного тока, 1 мин.

Характеристики

  • Способен проводить большой ток до 10 А для смартфонов, что является лучшим классом в отрасли (*) и способствует сокращению времени зарядки устройств. (См. Каталог для размещения рисунков на печатных платах.)
    (*) На основе исследований Kyocera по состоянию на январь 2017 г.
  • Металлическая крышка увеличивает прочность, которая в противном случае может быть снижена в компактных соединителях с более низкими профилями.Это также предотвращает повреждение из-за несовпадения контактов, поскольку конструкция металлической крышки помогает плавно направлять разъемы для облегчения стыковки.
  • Экономия места при высоте штабеля 0,7 мм, ширине 2,2 мм и длине 5,64 мм
  • Упаковано в ленту и катушку: 15000 штук в катушке
  • Соответствует RoHS и не содержит галогенов
  • Материал контакта: медный сплав
  • Материал изолятора: термостойкий пластик
  • Диапазон рабочих температур: от -40 до + 85 ° C

Характеристики покрытия

Код покрытия Контактная зона Задняя часть Металлические выступы Соответствие RoHS
829+ Au Au Au Есть

Связанная информация

Деталь No.

Добавить комментарий