Расчет сечения трубы для отопления: Диаметр труб системы отопления: расчет, формула, подбор

Содержание

Как рассчитать диаметр труб для отопления частного дома

Заужение диаметра трубы отопления последствия

Правильный выбор: расчет диаметра трубы для отопления


Перед тем как устанавливать отопление в доме, сперва следует правильно произвести расчет диаметра труб Расчет будет рассматриваться на системах с принудительной вентиляцией. В таковых системах движение теплоносителя обеспечивает постоянно работающий циркуляционный насос. Когда выбирается диаметр труб, учитывается, что главная их задача – обеспечение доставки нужного количества тепла к приборам обогрева.

Данные: как рассчитать диаметр трубы для отопления

Для расчета диаметра трубопровода понадобятся такие данные: это и общие теплопотери жилища, и протяженность трубопровода, и расчет мощности радиаторов каждой комнаты, а также способ разводки. Развода может быть однотрубной, двухтрубной, иметь принудительную или естественную вентиляцию.

Также обратите внимание на маркировку у медных и полипропиленовых труб наружного диаметра. Внутренний же можно вычислить, отняв толщину стенки. У металлопластиковых и стальных труб внутренний размер проставляется при маркировке.

К сожалению, рассчитать точно сечение труб невозможно. Так или иначе, а придется выбирать вам из пары вариантов. Этот момент стоит пояснить: к радиаторам нужно доставить определенное количество тепла, добившись при этом равномерного нагрева батарей. Если речь идет о системах с принудительной вентиляцией, то делается это при помощи труб, насоса и самого теплоносителя. Все, что нужно – это прогнать за некий временной промежуток нужное количество теплоносителя.

Получается, что можно выбрать трубы меньшего диаметра, и теплоноситель подавать с большей скоростью. Можно сделать также выбор в пользу труб большего сечения, но интенсивность подачи теплоносителя уменьшить. Предпочтителен первый вариант.

Выбор скорости воды в системе отопления

Большая скорость воды и трубы меньшего диаметра – это наиболее частый выбор. Если увеличить диаметр трубы, то уменьшится скорость движения. Но последний вариант не так част, уменьшение движения не очень выгодно.


При выборе труб также следует учитывать и возможную скорость воды в системе отопления

Почему высокая скорость и меньший диаметр трубы выгоднее:

  • Изделия меньшего диаметра стоят меньше;
  • Работать с трубами меньшего диаметра в домашних условиях проще;
  • Если прокладка открытая, они не так сильно привлекают внимание, а если укладка идет в стены или пол, то потребуются штробы меньшие по размеру;
  • Небольшой диаметр обеспечивает меньшее количество теплоносителя в трубе, а это, в свою очередь, снижает инерционность системы, что экономит топливо.

Разработаны специальные таблицы, по которых определяется размер труб для дома. Такая таблица учитывает требуемое количество тепла, а также скорость движения теплоносителя, а также температурные показатели работы системы. Получается, чтобы осуществить подбор труб нужного сечения, находится необходимая таблица, и по ней подбирается диаметр. Сегодня может найтись и подходящая онлайн-программа, которая заменяет таблицу.

Схема разводки отопительной системы и диаметр труб для отопления

Схема разводки отопления всегда учитывается. Она может быть двухтрубной вертикальной, двухтрубной горизонтальной и однотрубной. Двухтрубная система предполагает как верхнее, так и нижнее размещение магистралей. А вот однотрубная система учитывает экономное использование длины магистралей, таковая подходит для отопления с естественной циркуляцией. Тогда двухтрубная потребуют обязательного включения насоса в схему.

Горизонтальная разводка бывает трех типов:

  • Тупиковая;
  • Лучевая или коллекторная;
  • С параллельным движением воды.

К слову, в схеме однотрубной системы может быть и так называемая обходная труба. Она станет дополнительной магистралью для циркуляции жидкости, если отключился один или несколько радиаторов. Обычно на всякий радиатор устанавливаются запорные краны, которые позволяют перекрыть водную подачу в случае необходимости.

Какие могут быть последствия: заужение диаметра трубы отопления

Заужение диаметра трубы крайне нежелательно. Когда происходит разводка по дому, рекомендовано использовать одинаковый типоразмер – увеличить или уменьшить его не стоит. Возможным исключением будет только большая длина циркуляционного контура. Но и в этом случае нужно быть внимательным.


Многие специалисты не рекомендуют заужать диаметр труб, поскольку это может пагубно отразиться на всей системе отопления

Но почему же при замене стальной трубы на пластиковую заужается размер? Здесь все просто: при одинаковом внутреннем диаметре наружный же диаметр самих пластиковых труб больше. А значит отверстия в стенах и перекрытиях придется расширять, причем, серьезно – с 25 до 32 мм. А ведь для этого будет нужен специнструмент. Потому проще в эти отверстия пропустить трубы потоньше.

Но в этой же ситуации получается, что жильцы, которые произвели такую замену труб, на автоматике «украли» у своих соседей по данному стояку примерно 40% тепла и воды, проходящие по трубам. Потому стоит понимать, что толщина труб, самовольно заменяемая в тепловой системе – не вопрос частного решения, делать этого нельзя. Если стальные трубы меняются на пластиковые, расширять отверстия в перекрытиях, как ни крути, а придется.

Есть и такой вариант в данной ситуации. Можно при замене стояков в старые отверстия пропустить новые отрезочки стальных труб того же диаметра, длина их будет 50-60 см (это зависит от такого параметра, как толщина перекрытия). А потом они соединяются муфтами с пластиковыми трубами. Этот вариант вполне приемлем.

Расчет диаметра трубы для отопления: как рассчитать, скорость воды в системе, последствия заужения, теплоноситель

Расчет диаметра трубы для отопления предваряет расчет общих потерь тепла, мощности котла и мощности радиаторов для каждого помещения. Также выбирается способ разводки, составляется схема и расчеты.

Источник: teploclass.ru

trubyisantehnika.ru

Расчет веса

С расчетом веса трубы все просто: надо знать, сколько весит погонный метр, затем эту величину умножить на длину в метрах. Вес круглых стальных труб есть в справочниках, так как этот вид металлопроката стандартизован. Масса одного погонного метра зависит от диаметра и толщины стенки. Один момент: стандартный вес дан для стали плотностью 7,85 г/см2 — это тот вид, который рекомендован ГОСТом.

В таблице Д — наружный диаметр, условный проход — внутренний диаметр, И еще один важный момент: указана масса обычных стального проката, оцинкованные на 3% тяжелее.

как рассчитать, скорость воды в системе, последствия заужения, теплоноситель

Перед тем как устанавливать отопление в доме, сперва следует правильно произвести расчет диаметра труб Расчет будет рассматриваться на системах с принудительной вентиляцией. В таковых системах движение теплоносителя обеспечивает постоянно работающий циркуляционный насос. Когда выбирается диаметр труб, учитывается, что главная их задача – обеспечение доставки нужного количества тепла к приборам обогрева.

Данные: как рассчитать диаметр трубы для отопления

Для расчета диаметра трубопровода понадобятся такие данные: это и общие теплопотери жилища, и протяженность трубопровода, и расчет мощности радиаторов каждой комнаты, а также способ разводки. Развода может быть однотрубной, двухтрубной, иметь принудительную или естественную вентиляцию.

Также обратите внимание на маркировку у медных и полипропиленовых труб наружного диаметра. Внутренний же можно вычислить, отняв толщину стенки. У металлопластиковых и стальных труб внутренний размер проставляется при маркировке.

К сожалению, рассчитать точно сечение труб невозможно. Так или иначе, а придется выбирать вам из пары вариантов. Этот момент стоит пояснить: к радиаторам нужно доставить определенное количество тепла, добившись при этом равномерного нагрева батарей. Если речь идет о системах с принудительной вентиляцией, то делается это при помощи труб, насоса и самого теплоносителя. Все, что нужно – это прогнать за некий временной промежуток нужное количество теплоносителя.

Получается, что можно выбрать трубы меньшего диаметра, и теплоноситель подавать с большей скоростью. Можно сделать также выбор в пользу труб большего сечения, но интенсивность подачи теплоносителя уменьшить. Предпочтителен первый вариант.

Выбор скорости воды в системе отопления

Большая скорость воды и трубы меньшего диаметра – это наиболее частый выбор. Если увеличить диаметр трубы, то уменьшится скорость движения. Но последний вариант не так част, уменьшение движения не очень выгодно.


При выборе труб также следует учитывать и возможную скорость воды в системе отопления

Почему высокая скорость и меньший диаметр трубы выгоднее:

  • Изделия меньшего диаметра стоят меньше;
  • Работать с трубами меньшего диаметра в домашних условиях проще;
  • Если прокладка открытая, они не так сильно привлекают внимание, а если укладка идет в стены или пол, то потребуются штробы меньшие по размеру;
  • Небольшой диаметр обеспечивает меньшее количество теплоносителя в трубе, а это, в свою очередь, снижает инерционность системы, что экономит топливо.

Разработаны специальные таблицы, по которых определяется размер труб для дома. Такая таблица учитывает требуемое количество тепла, а также скорость движения теплоносителя, а также температурные показатели работы системы. Получается, чтобы осуществить подбор труб нужного сечения, находится необходимая таблица, и по ней подбирается диаметр. Сегодня может найтись и подходящая онлайн-программа, которая заменяет таблицу.

Схема разводки отопительной системы и диаметр труб для отопления

Схема разводки отопления всегда учитывается. Она может быть двухтрубной вертикальной, двухтрубной горизонтальной и однотрубной. Двухтрубная система предполагает как верхнее, так и нижнее размещение магистралей. А вот однотрубная система учитывает экономное использование длины магистралей, таковая подходит для отопления с естественной циркуляцией. Тогда двухтрубная потребуют обязательного включения насоса в схему.

Горизонтальная разводка бывает трех типов:

  • Тупиковая;
  • Лучевая или коллекторная;
  • С параллельным движением воды.

К слову, в схеме однотрубной системы может быть и так называемая обходная труба. Она станет дополнительной магистралью для циркуляции жидкости, если отключился один или несколько радиаторов. Обычно на всякий радиатор устанавливаются запорные краны, которые позволяют перекрыть водную подачу в случае необходимости.

Какие могут быть последствия: заужение диаметра трубы отопления

Заужение диаметра трубы крайне нежелательно. Когда происходит разводка по дому, рекомендовано использовать одинаковый типоразмер – увеличить или уменьшить его не стоит. Возможным исключением будет только большая длина циркуляционного контура. Но и в этом случае нужно быть внимательным.


Многие специалисты не рекомендуют заужать диаметр труб, поскольку это может пагубно отразиться на всей системе отопления

Но почему же при замене стальной трубы на пластиковую заужается размер? Здесь все просто: при одинаковом внутреннем диаметре наружный же диаметр самих пластиковых труб больше. А значит отверстия в стенах и перекрытиях придется расширять, причем, серьезно – с 25 до 32 мм. А ведь для этого будет нужен специнструмент. Потому проще в эти отверстия пропустить трубы потоньше.

Но в этой же ситуации получается, что жильцы, которые произвели такую замену труб, на автоматике «украли» у своих соседей по данному стояку примерно 40% тепла и воды, проходящие по трубам. Потому стоит понимать, что толщина труб, самовольно заменяемая в тепловой системе – не вопрос частного решения, делать этого нельзя. Если стальные трубы меняются на пластиковые, расширять отверстия в перекрытиях, как ни крути, а придется.

Есть и такой вариант в данной ситуации. Можно при замене стояков в старые отверстия пропустить новые отрезочки стальных труб того же диаметра, длина их будет 50-60 см (это зависит от такого параметра, как толщина перекрытия). А потом они соединяются муфтами с пластиковыми трубами. Этот вариант вполне приемлем.

Правильный расчет диаметра трубы для отопления (видео)

Если вы некомпетентны в вопросах расчета диаметра труб, обратки, схем и выбора теплоносителя, лучше позвать специалистов, попросить их прокомментировать свою работу.

Удачных проектов!

Добавить комментарий

teploclass. ru

какой выбрать, последствия заужения к квартире, подбор по таблице

Отопление дома или квартиры — не такая простая инженерная система, как может показаться на первый взгляд. При составлении проекта требуется провести много расчётов, в частности, нужного диаметра трубопровода.

Правильно подобрать диаметр — это залог надёжной, комфортной и эффективной системы обогрева помещений.

К примеру, отопление без насоса, где теплоноситель циркулирует самотёком, вообще может не заработать при слишком узких трубах, а схема с принудительной циркуляцией при занижении диаметра будет шуметь или не прогревать помещения до нужной температуры. Поэтому следует воспользоваться правилами расчёта, которые позволят привести теплопотери к минимуму.

Odnoklassniki

Влияние диаметра труб на КПД для системы отопления в частном доме

Ошибочно полагаться на принцип «больше — лучше» при выборе сечения трубопровода. Слишком большое сечение трубы ведёт к снижению давления в ней, а значит и скорости теплоносителя и теплового потока.

Более того, если диаметр слишком велик, у насоса попросту может не хватить производительности для перемещения такого большого объёма теплоносителя.

Важно! Больший объём теплоносителя в системе подразумевает высокую суммарную теплоёмкость, а значит времени и энергии на его подогрев будет затрачиваться больше, что также влияет на КПД не в лучшую сторону.

Подбор сечения трубы: таблица

Оптимальное сечение трубы должно быть минимально возможным для данной конфигурации (см. таблицу) по следующим причинам:

  • маленький объём теплоносителя быстрее нагревается;
  • меньший просвет создаёт большее сопрот

ogon.guru

Как высчитать площадь поперечного сечения

Формула нахождения площади сечения круглой трубы

Если труба круглая, площадь сечения считать надо по формуле площади круга: S = π*R2. Где R — радиус (внутренний), π — 3,14. Итого, надо возвести радиус в квадрат и умножить его на 3,14.

Например, площадь сечения трубы диаметром 90 мм. Находим радиус — 90 мм / 2 = 45 мм. В сантиметрах это 4,5 см. Возводим в квадрат: 4,5 * 4,5 = 2,025 см2, подставляем в формулу S = 2 * 20,25 см2 = 40,5 см2.

Площадь сечения профилированной трубы считается по формуле площади прямоугольника: S = a * b, где a и b — длины сторон прямоугольника. Если считать сечение профиля 40 х 50 мм, получим S = 40 мм * 50 мм = 2000 мм2 или 20 см2 или 0,002 м2.

Статья по теме: Почему стиральная машина не сливает воду и что делать?

Расчет диаметра трубы для отопления – ответственный этап — Учебник сантехника

В то время, когда речь идет о монтаже отопительной системы, то частенько труба выбирается легко на основании советов привычных либо рекомендаций продавцов в магазине. Расчет диаметра трубы для отопления выполняется далеко не всегда.

Выбирая типоразмер наугад, имеется риск того, что отопительная система будет работать неэффективно.

Влияние диаметра на работу отопления

Инструкция по монтажу отопительной системы вряд ли затрагивает вопросы расчета трубопровода (определите кроме этого как вычислить диаметр трубы для отопления).

В это же время, при перемещении по трубе теплоноситель сталкивается с несколькими видами сопротивлений и это необходимо учитывать при подборе типоразмера:

  • трение о стены. За счет этого часть скорости теряется,
  • утраты скорости при поворотах. Разводку по квартире нереально выполнить без поворотов (к тому же имеется повороты под углом 90?),
  • изменение диаметров. В случае если при разводке по квартире постараться применять различные типоразмеры, то сопротивление перемещению потока будет наблюдаться еще и в местах сопряжения различных типоразмеров.

Обратите внимание! Заужение диаметра трубы отопления нежелательно. При разводке по дому необходимо применять одинаковый типоразмер. Исключение допускается при громадной длины циркуляционного контура, при таких условиях возможно расширить скорость перемещения теплоносителя за счет уменьшения D.

Что же касается самого трубопровода, то основной его чёртом, воздействующей на перемещение теплоносителя, возможно назвать внутренний диаметр (Двн). Чем он меньше, тем больше давление и напротив – с ростом Двн давление в системе падает. Это необходимо учитывать, в то время, когда выполняется подбор диаметра трубы для отопления.

С этим явлением и связана частая ошибка сантехников-любителей. Они уверены в том, что в случае если забрать размер побольше, то через радиаторы будет проходить комната и большее количество теплоносителя стремительнее прогреется.

На самом же деле эффект будет противоположный – из-за падения давления батареи останутся прохладными. При таких условиях выручить может установка более замечательного циркуляционного насоса, но цена для того чтобы решения высока, значительно несложнее верно подобрать необходимый диаметр.

Пример расчета отопительной системы

В большинстве случаев, выполняется упрощенный расчет исходя из таких параметров как количество помещения, уровень его утепленности, разницы потока температур и скорости теплоносителя в подводящем и отводящем трубопроводе.

Диаметр трубы для отопления с принудительной циркуляцией определяется в таковой последовательности:

  • определяется суммарное количество тепла, которое нужно подать в помещение (тепловая мощность, кВт), возможно ориентироваться и на табличные данные,

  • задавшись скоростью перемещения воды, определяют оптимальный D.
Расчет тепловой мощности

Как пример будет выступать стандартная помещение с размерами 4,8х5,0х3,0м. Отопительный контур с принудительной циркуляцией, нужно выполнить расчет диаметров труб отопления для разводки по квартире. Главная расчетная формула выглядит так:

в формуле использованы такие обозначения:

  • V – количество помещения. В примере он равен 3,8•4,0•3,0 = 45,6м3,
  • ?t– отличие между температурой на улице и в помещении. В примере принято 53?С,
  • К –особый коэффициент, определяющий степень утепленности здания. В общем случае его значение находится в диапазоне от 0,6-0,9 (употребляется действенная теплоизоляция, кровля и пол утеплены, установлены как минимум двойные стеклопакеты) до 3-4 (постройки без теплоизоляции, к примеру, бытовки). В примере употребляется промежуточный вариант – квартира имеет стандартную теплоизоляцию (К = 1,0 – 1,9), принято К = 1,1.

Итого тепловая мощность должна быть равна 45,6•53•1,1/860 = 3,09кВт.

Возможно воспользоваться табличными данными.

Определение диаметра

Диаметр труб отопления определяется по формуле

Где использованы обозначения:

  • ?t– отличие температур теплоносителя в подающем и отводящем трубопроводах. Учитывая то, что подается вода при температуре порядка 90-95?С, а остыть она успевает до 65-70?С, перепад температур возможно принять равным 20?С,
  • v –скорость перемещения воды. Нежелательно, дабы она превышала значение 1,5 м/с, а минимальный допустимый порог – 0,25 м/с. Рекомендуется остановиться на промежуточном значении скорости 0,8 – 1,3 м/с.

Обратите внимание! Неверный выбор диаметра трубы для отопления может привести к падению скорости ниже минимального порога, что со своей стороны приведёт к образованию воздушных пробок. В следствии эффективность работы станет нулевой.

Значение Dвн в примере составит v354•(0,86•3,09/20)/1,3 = 36,18 мм. В случае если обратить внимание на типоразмеры, к примеру, ПП трубопровода, то видно, что для того чтобы Dвн нет. При таких условиях выбирается легко ближайший диаметр пропиленовых труб для отопления.

В этом примере возможно выбрать PN25 с Двн 33,2 мм, это приведет к маленькому повышению скорости перемещения теплоносителя, но она все равно останется в допустимых пределах.

Особенности отопительных систем с естественной циркуляцией

Основное их отличие пребывает в том, что в них не употребляется циркуляционный насос для давления. Жидкость перемещается самотеком, по окончании нагрева она вытесняется наверх, после этого проходит через радиаторы, остывает и возвращается к котлу.

В сравнении с системами с принудительной циркуляцией, диаметр труб для отопления с естественной циркуляцией должен быть больше. База расчета в этом случае пребывает в том, дабы циркуляционное давление превышало утраты на местные сопротивления и трение.

Чтобы любой раз не высчитывать значение циркуляционного давления, существуют особые таблицы, составленные для различных перепадов температур. К примеру, в случае если протяженность трубопровода от котла до радиатора образовывает 4,0 м, а перепад температур – 20?С (70?С в отводящем и 90?С в подающем), то циркуляционное давление составит 488 Па. Исходя из этого подбирается скорость теплоносителя, методом трансформации D.

При исполнении расчетов своими руками необходим и проверочный расчет. Другими словами вычисления ведутся в обратном порядке, цель проверки – установить не превышают ли утраты на местные сопротивления и трение циркуляционное давление.

Подведение итогов

Расчет трубопровода отопления – очень важная задача на этапе проектирования. Информация в статье разрешит самостоятельно выполнить расчет отопительной системы, так что комфортный микроклимат в доме гарантирован (см.кроме этого статью ‘Какие конкретно трубы для отопления лучше: анализ 4-х наиболее распространённых вариантов’).

На видео в данной статье расчет трубопровода ведется по допустимой скорости.

Загрузка…

partner-tomsk. ru

Подбор диаметра труб отопления — Teplopraktik

Диаметр труб отопления зависит от того какой объем теплоносителя будет проходить через них. Очевидно, что на главном подающем трубопроводе, идущем от отопительного котла, диаметр будет больше, на ветке с тремя радиаторами он будет еще меньше, а на конечном радиаторе он будет самым маленьким. Соответственно диаметр трубы будет зависеть от общей тепловой мощности радиаторов, который питает данный трубопровод.

Кроме того диаметр трубопровода зависит от скорости движения теплоносителя в системе и от перепада температур подача/обратка. Чем выше этот перепад, тем меньше требуется диаметр трубопровода. Стандартный перепад температур – 20°С. В более комфортных системах этот перепад меньше – 10°С.

Отопительная система с циркуляционным насосом характеризуется высокой скоростью теплоносителя, система же с естественной циркуляцией обладает низкой скоростью, поэтому это обязательно надо учитывать при подборе труб отопления. Не стоит закладывать в расчет трубопроводов слишком большую скорость движения воды в трубах, т. к. это создаст различные неприятные шумы и журчание в трубах. При слишком низкой скорости же возникает риск образования воздушных пробок в системе. Скорость движения в трубах должна быть в пределах 0,4 – 0,6 м/с. Самотечная система характеризуется значительно более низкой скоростью теплоносителя, поэтому диаметр труб нужно выбирать больше.

Поэтому ниже мы укажем таблицы подбора диаметра труб для различных систем с указанными параметрами. В таблице используется подбор диаметра труб из различных материалов. Стальные трубы ВГП имеют обозначение по внутреннему диаметру, тогда как полипропиленовые, металлопластиковые и трубы из сшитого полиэтилена имеют обозначение по наружному диаметру. Это учтено в таблице подбора диаметров трубопроводов.

Разница температур подача/обратка — 20°С, скорость воды 0,5 м/с — СТАНДАРТНАЯ СИСТЕМА ОТОПЛЕНИЯ

Тепловая нагрузка, кВтНеобходимый внутренний диаметр трубы, ммПодбор трубы для необходимого внутреннего диаметра:
ВГП стальныеПолипропиленСшитый полиэтилен
50391,5 дюйма (40мм)5050
40351,5 дюйма (40мм)5050
30301,25 дюйма (32мм), дюйм с четвертью)4040
20251 дюйм (25мм)3232
15211 дюйм (25мм)3232
12193/4 дюйма (20мм)2525
10173/4 дюйма (20мм)2525
8163/4 дюйма (20мм)2525
6141/2 дюйма (15мм)2020
5121/2 дюйма (15мм)2020
4111/2 дюйма (15мм)2020
3103/8 дюйма (10мм)1616
283/8 дюйма (10мм)1616
163/8 дюйма (10мм)1616

Разница температур подача/обратка — 10°С, скорость воды 0,5 м/с — НИЗКОТЕМПЕРАТУРНАЯ СИСТЕМА ОТОПЛЕНИЯ

Тепловая нагрузка, кВтНеобходимый внутренний диаметр трубы, ммПодбор трубы для необходимого внутреннего диаметра:
ВГП стальныеПолипропиленСшитый полиэтилен
50552 дюйма (50мм)6363
40482 дюйма (50мм)6363
30432 дюйма (50мм), либо 1,5 дюйма (40мм)6363
20351,5 дюйма (40мм)5050
15301,25 дюйма (32мм)4040
12271,25 дюйма (32мм)4040
10251 дюйм (25мм)3232
8221 дюйм (25мм)3232
6193/4 дюйма (20мм)2525
5173/4 дюйма (20мм)2525
4161/2 дюйма (15мм)2020
3131/2 дюйма (15мм)2020
2111/2 дюйма (15мм)1616
181/2 дюйма (15мм)1616

Разница температур подача/обратка — 20°С, скорость воды 0,2 м/с — САМОТЕЧНАЯ СИСТЕМА ОТОПЛЕНИЯ

Тепловая нагрузка, кВтНеобходимый внутренний диаметр трубы, ммПодбор трубы для необходимого внутреннего диаметра:
ВГП стальныеПолипропиленСшитый полиэтилен
30482 дюйма (50мм)6363
20391,5 дюйма (40мм)5050
15341,5 дюйма (40мм)5050
12301,25 дюйма (32мм), (дюйм с четвертью)4040
10281,25 дюйма (32мм), (дюйм с четвертью)4040
8251 дюйм (25мм)3232
6213/4 дюйма (20мм)2525
5193/4 дюйма (20мм)2525
4173/4 дюйма (20мм)2525
3153/4 дюйма (20мм))2525
2121/2 дюйма (15мм)2020
1101/2 дюйма (15мм)2020

Пример использования: двухтрубная система с циркуляционным насосом, общая мощность 18 кВт.

Разводка выполнена полипропиленовой трубой, условное обозначение — ПП.

Как видим из схемы — вначале из котла выходит полипропиленовая труба, диаметром 40мм, внутренний просвет у нее 25мм, что соответствует металлической ВГП трубе в 1 дюйм (25мм). Далее идет отвод на бойлер (4 кВт) и теплые полы (2 кВт) двух ПП труб, диаметром 16мм. После этого часть теплоносителя отделилась, поэтому нет необходимости в такой толстой трубе. На отопление 1-ого и 2-ого этажей уже пойдет более тонкая труба — 32мм, она пойдет до первого тройника. На тройнике отделяется ветка на 1-ый этаж, диаметром 25мм, и на 2-ой этаж, также диаметром 25мм. К конечным радиаторам уже подходит полипропиленовая труба диаметром 16мм. И на 3-х последних радиаторах также идет заужение подающей трубы до 16мм.

В однотрубной системе, в отличие от двухтрубной по одному трубопроводу подается весь теплоноситель системы. Поэтому в такой системе весь трубопровод (после ответвления трубы на бойлер и теплый пол) будет диаметром 32мм, а к отдельным радиаторам от основного трубопровода будут подходить трубы 16мм.

teplopraktik.ru

Расчет площади поверхности трубы

Труба представляет собой очень длинный цилиндр, и площадь поверхность трубы рассчитывается как площадь цилиндра. Для вычислений потребуется радиус (внутренний или наружный — зависит от того, какую поверхность вам надо рассчитать) и длина отрезка, который вам необходим.

Формула расчета боковой поверхности трубы

Чтобы найти боковую площадь цилиндра, перемножаем радиус и длину, полученное значение умножаем на два, а потом — на число «Пи», получаем искомую величину. При желании можно рассчитать поверхность одного метра, ее потом можно умножать на нужную длину.

Статья по теме: Строительство погреба

Для примера рассчитаем наружную поверхность куска трубы длиной 5 метров, с диаметром 12 см. Для начала высчитаем диаметр: делим диаметр на 2, получаем 6 см. Теперь все величины надо привести к одним единицам измерения. Так как площадь считается в квадратных метрах, то сантиметры переводим в метры. 6 см = 0,06 м. Дальше подставляем все в формулу: S = 2 * 3,14 * 0,06 * 5 = 1,884 м2. Если округлить, получится 1,9 м2.

Диаметр труб для отопления. Какой и как выбрать по таблицам

Как правильно подобрать трубы для отопления? Этот вопрос волнует каждого застройщика, поскольку ошибка может нарушить работу всей системы, сделать ее неэффективной и некомфортной.

При заниженном диаметре:

  • Трубы испытывают повышенные нагрузки и сокращается срок их службы. О 50-и годах, как заявляют производители, речь даже не идет.
  • В пиковые периоды при заниженном диаметре трубы может быть не обеспечена подача тепла в нужном количестве и в помещении будет некомфортная температура.

Но и ставить трубы на отопление с большим запасом тоже смысла нет:

  • Это ненужный перерасход денежных средств, снижается инвестиционная эффективность замены труб и оборудования системы отопления.
  • Из-за маленькой скорости потока теплоносителя в трубах могут образовываться отложения, что ведет к уменьшению их пропускной способности.
  • Снижается эффективность из-за большего объема системы отопления. Она приобретает повышенную инерционность.
  • Возможно постоянное завоздушивание, что ведет в повышенному износу радиаторов отопления, теплообменника котла и других компонентов

По сути, при правильно выбранном диаметре труб отопления теплоноситель перемещается по трубопроводам в нужном количестве и определенном диапазоне скоростей. Таким образом при выборе диаметра труб для системы радиаторного отопления с принудительной циркуляцией необходимо отталкиваться от двух значений:

  • тепловая мощность отопительного контура
  • скорость потока теплоносителя в трубопроводе

Усредненно показатель тепловой мощности часто принимают 100 Вт/м. кв., хотя правильнее заказать профессиональный расчет. Теплопотери, которые напрямую определяют тепловую мощность, зависят от многих факторов: утепление дома, тип окон и дверей с ручками http://www. mirar-group.ru, климата в регионе и других. Скорость потока зависит от расхода теплоносителя и указывается производителями труб в специальных таблицах.

Расчет диаметра труб отопления по таблице

Дабы упростить «жизнь» начинающим застройщикам, специалистами уже составлены специальные таблицы по которым можно подобрать нужный диаметр при ΔТ=20 град.С (разница температур между подачей и обраткой).

Ниже таблица подбора диаметра трубы для отопления при ΔТ=20 град. С:

Алгоритм подбора следующий:

  • Перемещаясь по столбцам с показателем скорости потока жидкости 0,4-0,6 находим нужный показатель теплового потока.
  • По крайнему левому столбцу определяем требуемый внутренний диаметр трубопровода.
  • По таблицам производителя, в зависимости от внутреннего диаметра, находим нужный наружный диаметр.

Пример расчета

Например, есть дом 60 кв. метров.
По среднему показателю теплопотерь 100 Вт/м.

кв., требуемый тепловой поток 6000 Вт. Применяем коэффициент запаса 1,2 — 6000*1,2=7200 Вт
В таблице максимально приближенным будет значение 7185 Вт при скорости потока 0,5 м/с.
По крайнему левому столбцу внутренний диаметр трубы будет равным 15 мм.
По таблице производителя находим требуемый наружный диаметр трубы. Например, для универсальной металлопластиковой трубы TECEFlex (стр. 11) ближайшее значение в сторону увеличения — 18 мм. Это труба универсальная многослойная (PE-Xc\Al\PE) 25 мм. Аналогично смотрим ассортимент Экопластик стр. 7. Нам подойдет полипропиленовая труба Stabi 25 мм.

Соответствие тепловой мощности и диаметра

Проектировщиками и монтажниками уже подобраны оптимальные соотношения тепловой мощности и наружного диаметра отопительной пластиковой трубы (как в каталоге производителей).

  • Для 3000-5000 Вт — подойдет труба 20 мм
  • 6000-9000 Вт — 25 мм
  • 10000-15000 Вт — 32 мм
  • 16000-21000 Вт — 40 мм
  • 22000-32000 Вт — 50 мм

Данные показатели являются усредненными и, особенно если тепловая мощность находится вблизи пограничного значения, лучше обратиться к специалистам. Но с большой долей вероятности можно утверждать, что если требуемая тепловая мощность контура, например, 12 кВт (площадь около 120 м. кв.), то разводку системы отопления с принудительной циркуляцией нужно проводить пластиковыми трубами диаметром 32 мм.

Следует учесть, что все вышенаписанное относится только к выбору диаметра. Кроме этого, при проектировании системы отопления дома нужно выбрать трубы с учетом эксплуатационных параметров (температуры и давления), особенностей монтажа (замоноличенные, под гипсокартоном или плинтусом, открытые или другое), по типу соединения (сварка, запрессовка, обжим, пресс-соединения).

какой выбрать, последствия заужения к квартире, подбор по таблице

Отопление дома или квартиры — не такая простая инженерная система, как может показаться на первый взгляд. При составлении проекта требуется провести много расчётов

, в частности, нужного диаметра трубопровода.

Правильно подобрать диаметр — это залог надёжной, комфортной и эффективной системы обогрева помещений.

К примеру, отопление без насоса, где теплоноситель циркулирует самотёком, вообще может не заработать при слишком узких трубах, а схема с принудительной циркуляцией при занижении диаметра будет шуметь или не прогревать помещения до нужной температуры. Поэтому следует воспользоваться правилами расчёта, которые позволят привести теплопотери к минимуму.

Влияние диаметра труб на КПД для системы отопления в частном доме

Ошибочно полагаться на принцип «больше — лучше» при выборе сечения трубопровода. Слишком большое сечение трубы ведёт к снижению давления в ней, а значит и скорости теплоносителя и теплового потока.

Более того, если диаметр слишком велик, у насоса попросту может не хватить производительности для перемещения такого большого объёма теплоносителя.

Важно! Больший объём теплоносителя в системе подразумевает высокую суммарную теплоёмкость, а значит времени и энергии на его подогрев будет затрачиваться больше, что также влияет на КПД не в лучшую сторону.

Подбор сечения трубы: таблица

Оптимальное сечение трубы должно быть минимально возможным для данной конфигурации (см. таблицу) по следующим причинам:

  • маленький объём теплоносителя быстрее нагревается;
  • меньший просвет создаёт большее сопротивление движению теплоносителя, оно замедляется, что приводит к уменьшению шума;
  • трубопровод небольшого диаметра лучше впишется в интерьер и вызовет меньше трудностей при монтаже;
  • от размера трубы зависит её стоимость, поэтому тонкие трубы более выгодны по цене.

Однако, не стоит переусердствовать: помимо того, что маленький диаметр создаёт повышенную нагрузку на соединительную и запорную арматуру, он также не в состоянии перенести достаточно тепловой энергии.

Чтобы определить оптимальное сечение трубы, используется следующая таблица.

Фото 1. Таблица, в которой значения приведены для стандартной двухтрубной схемы системы отопления.

Какие нужны параметры

В описании характеристик на конкретную трубу могут встретиться следующие параметры:

  • Внутренний диаметр — основной фактор, влияющий на производительность системы и учитывающийся в расчёте.
  • Внешний — измеряется по внешней окружности трубопровода, влияет на то, какие отверстия потребуется сверлить в стенах и перекрытиях.
  • Номинальный, или условный — приблизительно совпадает с внутренним сечением трубы, выбирается из фиксированного ряда чисел по ГОСТу, обозначается как DN 100. Для распространённых значений иногда так же обозначается как диаметр резьбы в дюймах, например: 1/2″, 3/4″.

Процедура расчёта, чтобы подобрать размер

Рассмотрим пример типового расчёта сечения трубопровода для обогрева комнаты 40 м2.

  • Вычислим оптимальное количество энергии для прогрева помещения. Для средней полосы, утеплённого дома и потолков не выше 3 метров, на 10 м2 площади требуется 1 кВт тепла. Или для 40 м2 — 4 кВт.
  • Берём 20% запас (на случай непредвиденных теплопотерь в виде открытых окон и других факторов): 4*1,2 = 4,8 кВт, или 4800 Вт. Под каждым окном в помещении должен стоять радиатор отопления. Допустим, в нашей комнате 3 окна, тогда это 3 радиатора, каждый по ~1,6 кВт.

Внимание! Тепловая мощность указывается в техпаспорте на батарею отопления. Можно использовать более мощный радиатор, но не наоборот, иначе помещение не будет прогреваться достаточно эффективно.

  • Теперь обращаемся к таблице и находим в ячейках самое близкое значение мощности к расчётному, округляя в большую сторону.

Согласно таблице, это 5518 Вт и нужно использовать трубопровод с сечением равным 12 мм, а скорость движения теплоносителя составит 0,6 м/с.

Несмотря на присутствие в ячейках других близких значений, используют значения из ограниченной синим цветом зоны, которая заключает в себе приемлемые значения скорости жидкости в трубопроводе.

Подходящая скорость протока теплоносителя по трубам — от 0,3 до 0,7 м/с. Меньшая — приведёт к медленному обогреву помещения и неравномерному прогреву радиаторов, а при большей жидкость просто не будет успевать прогреваться до установленной температуры в теплообменнике котла и создавать ощутимый шум.

Вам также будет интересно:

Особенности выбора в частном доме

В случае наличия центральной отопительной магистрали, подбор диаметра проводится аналогично квартирным отопительным системам. Однако если вы проектируете автономное отопление в частном доме, то необходимо принять в расчёт тип циркуляции теплоносителя: естественный или принудительный.

Принудительная циркуляция жидкости не так привередлива к выбору сечения трубопровода, а вот работа самотёчной системы с естественной циркуляцией очень сильно зависит от диаметра труб на различных участках.

Здесь больший размер трубы означает меньшее сопротивление и лучшую производительность системы, а некоторые участки контура должны обладать меньшим диаметром. Например, при установке байпаса (замыкающего участка) его диаметр рекомендуется на один условный размер меньше, чем основного трубопровода.

Фото 2. Применение байпаса в отопительной системе, в этом случае диаметр труб должен быть меньше, чем у трубопровода.

Последствия заужения стояка в многоквартирном доме

Весь контур системы отопления в идеале должен быть выполнен трубами одного размера. Отдельные узкие участки приводят к локальным повышениям давления и снижению расхода жидкости, что может пагубно отразиться на эффективности отопления.

При переделке системы отопления в квартире и замене стальных труб на пластиковые, можно по невнимательности сделать заужение диаметра на данном участке. Происходит это потому, что толщина стенок трубопровода из полиэтилена гораздо больше толщины у стального. Так при одинаковом внешнем сечении, пластиковая труба будет обладать меньшим внутренним просветом.

Зачастую такое делается только ради экономии времени и усилий, ведь старые отверстия в стенах под стальные трубы придётся расширять, причём немало: с 25 до 32 мм. Гораздо проще сэкономить и поставить трубу с меньшим внутренним сечением.

Однако делать такое категорически нельзя из-за серьезных последствий: в многоквартирном доме у соседей по стояку вы таким образом украдёте 40% тепла и воды, проходящей по трубам.

Как выбрать диаметр подачи и обратки в квартире

В двухтрубной схеме отопления может использоваться различное расположение труб подачи (с горячим теплоносителем) и обратки (с остывшим после передачи части энергии помещению). Если подача и обратка проходят рядом параллельно и каждый радиатор имеет индивидуальное подключение, то их диаметр можно выбрать одинаковым.

Справка! Однако если трубы разнесены, и подача заведена на чердак дома, откуда уже идут ответвления на комнаты, диаметр подающего трубопровода нужен больше обратного, для обеспечения достаточной производительности системы.

Трубопровод как ключ к эффективной работе

Сечение труб, из которых монтируется система отопления, имеет большое значение в эффективности её работы.

Неправильно произведённый расчёт диаметров может не проявить себя до поры до времени.

Например, пока вы не измените температуру теплоносителя или не попытаетесь запустить систему в холодном доме.

Если отопление и так работало «на грани», то изменение температурного режима может понизить давление до таких уровней, что система просто не будет работать.

Полезное видео

Из видео можно узнать некоторые советы специалиста по выбору диаметра труб отопительной системы.

Заключение

Помимо традиционного отопления на базе котла, сегодня набирает популярность геотермальное отопление, использующее тепловую энергию, запасённую в грунте от солнца. Специальное оборудование (тепловой насос) преобразует

небольшую температуру +5–8 °C на глубине земли в тепло для обогрева помещений.

К преимуществам данного способа отопления является повсеместная доступность, возобновляемость энергии, экологичность и низкие расходы на эксплуатацию. Но пока такие установки слишком дороги и окупаются через 5–8 лет. К тому же, для питания насоса требуется электричество, что делает такое отопление полностью энергозависимым.

необходимые данные и последовательность расчета

Трубы — одни из самых распространенных, разнообразных и незаменимых изделий в современном мире. Их функции и области применения так многочисленны, что только их перечисление займет всю страницу. Трубы, для выполнения разнообразнейших задач, изготовляются из металла, стекла, пластика и керамики. Размеры могут быть от долей миллиметра и до гигантских труб для транспортировки газа и нефти.

Эта статья поможет сделать подбор диаметра трубы для отопления, ведь ошибки при выборе диаметра трубы могут значительно ухудшить гидродинамику контура отопления, уменьшить КПД системы отопления и привести к неоправданным затратам на покупку труб завышенного диаметра.

Основные характеристики труб:

• усредненный диаметр;
• диаметр трубы внешний;
• диаметр трубы внутренний;
• материал трубы.

Что нужно сделать перед расчетом и монтажом системы?

Для контуров систем большое значение имеет диаметр трубы для отопления, определяющий гидродинамическое сопротивление и пропускную способность контура. Еще до начала расчета нужно четко определить тип труб и материал. Нанесенная маркировка для труб отличается. Пластиковые трубы маркируются с указанием наружного диаметра, а чугунные и стальные по внутреннему диаметру. Учитывать это обстоятельство придется, если монтаж контура будет производиться комбинированным способом.

Перед началом монтажа нужно нарисовать эскиз будущей отопительной системы, подобрать диаметр труб для отопления в частном доме и приобрести нужные материалы.
Подобрать комплектующие — краны, тройники, переходники, воздушные клапаны и т. п. Расчет диаметра трубы требует аккуратности и внимания, а последовательность расчета изложена в данной статье.

Данные необходимые для расчета

Обычно расчет диаметра труб для отопления частного дома начинается с вычисления тепловой мощности — Q. Нужное количество теплоты определяется произведением объема помещения V в м3 на норму равную 40 Вт/м3. Q = V х 40 Вт/м3. Следующим шагом определяется тип отопительной системы: двухтрубная или однотрубная. Для частных домов лучше двухтрубная система, но для дальнейшего расчета выбор типа системы не критичен.

Гораздо большее значение имеет выбранный метод движения теплоносителя:

  1. естественный или конвекционный;
  2. принудительный метод с применением циркуляционного насоса.

Основное отличие между этими методами в том, что выбирается при монтаже уклон труб отопления при естественной циркуляции, где жидкость движется самотеком, а второй метод предполагает движение под действием насоса, что значительно увеличивает скорость теплообмена.

Скорость движения теплоносителя — важнейший показатель.

Он влияет на выбор диаметра труб для отопления дома. Расчетные величины для естественной циркуляции — от 0,3 м/с. Скорость движения жидкости зависит от напора. Напор при выборе «самотечного» варианта определяется высотой подъема расширительного бака открытого типа. Каждый метр подъема добавляет величину давления равную 0,1 атмосферы.

При использовании принудительной циркуляции выбирается величина скорости — 0,7 м/с. Рассчитывая скорость нужно идти на определенный компромисс, т. к. при большой скорости возникнет шум в системе и значительно увеличится гидравлическое сопротивление, а при слишком малой скорости увеличенные размеры труб для отопления приведут к дополнительным финансовым затратам. Поэтому чаще всего выбирается меньший диаметр труб для отопления по следующим соображениям:

  • облегчается монтаж;
  • цена труб меньшего диаметра ниже;
  • при меньшем количестве теплоносителя увеличивается динамичность системы.

Последовательность расчета

Определены следующие исходные данные: эскиз системы отопления, определен тип отопительной системы, предварительно рассчитана величина Q для всех помещений. Как правило, расчет диаметра труб начинается для самого удаленного помещения.

Объемный расход теплоносителя вычисляется по формуле: G = 0.86 Q / 20 , в которой:

G – объемный расход воды, кг/ч;
Q – расчетное количество теплоты, Вт;
20 – разница температур в подаче и «обратке». Для расчетов равна 20 градусам.

По приведенной формуле определяется масса теплоносителя, но горячая вода имеет при 80 градусах плотность р = 971.6 кг/м3. Поэтому объемный расход Vo вычисляется формуле: Vo = G / р

Зная объем и скорость потока легко вычислить площадь поперечного сечения: S = Vo / (3600 х Vт), где:

S — площадь поперечного сечения;
Vo — расход (объемный) теплоносителя;
Vт — выбранная скорость движения воды.

И в завершение производится расчет диаметра по формуле:

D = корень квадратный из выражения — 4S /3,14.

После вычисления диаметра трубы для дальнего помещения, рассчитать какой диаметр трубы нужен для отопления следующего помещения, несложно. Но не следует забывать, что через это помещение нужно пропустить суммарное количество тепла для двух помещений и т. д. Принцип расчета понятен, но для тех, кому не приходилось заниматься расчетами, довольно громоздок.

Поэтому для облегчения расчетов разработаны таблицы, которые дают ответ и решают задачу — как рассчитать диаметр трубы для отопления. Подобную таблицу можно скачать в сети Интернет. Из таблиц четко видно — диаметр труб для отопления с естественной циркуляцией требуется больший, т. к. скорость движения потока 0,3 м/с. Подбирать трубу нужно по ближайшему большему диаметру, учитывая несовпадение логики маркировки труб из различных материалов:

  1. стальные водо-газопроводные трубы — указан внутренний диаметр;
  2. стальные электросварные трубы — наружный диаметр;
  3. полиэтиленовые, металлопластиковые, трубы ПНД, полипропиленовые трубы — указан наружный диаметр трубы.

Применение труб из полипропилена

Если для контура отопления применить полипропиленовые трубы для отопления как выбрать диаметр согласно вышеприведенным формулам? Да точно так же. Но у полипропиленовых труб огромный срок службы, до 100 лет, поэтому отопительная система, правильно рассчитанная и аккуратно смонтированная, будет служить очень долго. На вопрос — как подобрать размеры труб для отопления, ответ можно найти по таблицам, которые можно скачать в сети Интернет.

Популярность полипропиленовых труб для создания систем отопления довольно высока, ведь они значительно дешевле металлических, экологичны и имеют неплохой внешний вид. Да и монтаж контуров систем при использовании таких труб значительно облегчается. Разработаны специальные аппараты для сваривания труб, различные переходники, фитинги, краны и другие необходимые комплектующие. Сам процесс монтажа похож на сборку системы из конструктора.

Оребренные трубы

Иногда можно встретить объявление — куплю оребрение трубы для отопления бу, дорого. Что же это такое? И почему в объявлении есть слово — дорого?

Оребренные трубы — это трубы изготовленные методом поперечно-винтовой прокатки.

На них наносятся ребра, которые увеличивают площадь поверхности отдающей тепло. Использование подобных труб позволяет сократить вес теплообменников, ведь тепло будет отдавать также труба (оребренная), по которой движется теплоноситель.

Оребренная труба, если сравнить ее с гладкой трубой, имеет площадь теплообмена в 2-3 раза большую. Широкому применению оребренных труб препятствует их высокая цена. Трубы изготовляются из алюминия, меди и латуни. Создание отопительной системы с применением оребренных труб потребует значительных финансовых затрат, поэтому их расчет в данной статье не рассматривается.

Расчет сечения трубы отопления – формулы

Трубы в системе отопления играют важную роль: именно они разносят теплоноситель по помещениям, от котла – к радиаторам, которые нагревают воздух в комнатах.

Расчет сечения трубы отопления имеет очень важное значение для нормального функционирования системы.

Если сечение трубы для отопления будет слишком маленьким, то теплоотдача будет низкой, помещение как следует не прогреется. Если слишком большим, давление в системе упадет ниже допустимого уровня, и теплопотери будут слишком большими.

Сначала расчет труб для отопления проводится для каждой комнаты. В среднем для обогрева  каждых 10 м2 требуется 1 кВт энергии.

ВАЖНО: Вы должны понимать, что на самом деле прогревается объем воздуха в м3. Поэтому 10 м2 в данном случае имеется в виду при стандартной высоте потолков в 2,70 м (можно даже считать – до 3 м). Если потолки выше – вам придется произвести вычисления, сколько именно тепла понадобится для обогрева квадратного метра.

Как правильно рассчитать: цифры и формулы

Расчеты систем отопления являются достаточно сложными. По ним обычно проводят расчет диаметров для больших отопительных систем (для многоэтажных домов, производственных помещений ).

Для расчета системы отопления в частном доме или в квартире можно воспользоваться упрощенным вариантом.

Сечение (в сантиметрах!) рассчитывается по такой формуле. 

Используйте эту формулу

Q в данной формуле означает необходимое количество киловатт в данном участке системы.

V – скорость теплоносителя, измеряется в метрах в секунду; эта величина должна находиться в пределах 0,3 – 0,7, но однозначно – не ниже 0,25 м/сек.

Dt – это разница температуры теплоносителя на выходе из котла и в обратке. Чаще всего эта величина составляет 20° С (в стандартной системе температура на выходе +90°, на обратке – около +70°).

Считаем еще проще

По формуле можно не считать, а просто принять к сведению такую информацию:

  1. труба ½“ рассчитана на мощность 5,5 кВт;
  2. ¾“ – на 14,6 кВт;
  3. 1” – на 29,3 кВт.

То есть, если вам нужно прогревать комнату площадью в 40 м2 (и со стандартной высотой потолков) – для нее подойдет диаметр в полдюйма.

Для расчета диаметра основной трубы, при помощи которой производится разводка к комнатам, определяется аналогично исходя из общей площади помещения. То есть общая площадь дома 140 м2 – понадобится мощность в 14 кВт, а следовательно – подойдет ¾“, а вот для большей площади уже нужно будет использовать дюймовую трубу.

Важно! В формуле диаметр рассчитывается в сантиметрах. Сечение указывается в дюймах. Помните, что 1 дюйм равен 2,54 см. И это – ВНУТРЕННИЙ диаметр трубы!

В продаже бывают трубы диаметром ½”, ¾ “, 1” и другие, но именно эти три размера являются самыми востребованными. Но это – не размер внутреннего сечения!

Металлопластиковые, полипропиленовые и стальные трубы одинакового размера имеют разный внутренний диаметр. Поэтому когда вы решите совершить покупку – возьмите с собой штангенциркуль и померяйте в магазине внутренний диаметр.

Надеемся, что статья была вам полезна, и вы самостоятельно сможете выбрать трубы нужного сечения.

Будем сильно признательны, если вы поделитесь статьей со своими друзьями, знакомыми. Для этого нужно нажать на кнопки социальных сетей, которые расположены ниже. Уверены, что ваши соседи, друзья будут благодарны, ибо такие расчеты в быту мы совершаем достаточно часто.

Хорошего вам дня и теплых труб!

Подбор диаметра труб для системы отопления

Выбор диаметра трубопровода для системы отопления индивидуального дома осуществляется по принципу — чем больше необходимости в передаче тепла, тем больше должно быть сечение трубы при заданной температуре теплоносителя. По мере уменьшения необходимости в теплопередаче на каждом отдельно взятом участке, сечение трубопровода уменьшается.
Одним из наиболее применяемых методов вычисления диаметров труб является задача подбора скорости, с которой будет двигаться жидкость внутри трубы.
Минимальная скорость теплоносителя не должна быть меньше 0,3 м/сек. При низких скоростях образуется неравномерность нагрева частей системы.
Максимальная скорость теплоносителя не должна превышать 1,4 м/сек. При более высоких скоростях возможно возникновение турбулентности, шума от циркулирующего внутри трубопровода теплоносителя, а также эффект кавитации.

Опытным путем было установлено что темп движения жидкости в трубах отопления должна варьироваться в пределах 0,3 — 0,7 м/сек.
 

В таблице представлены скорости движения жидкости в зависимости от диаметра трубопровода и тепловой мощности.
Для простого примера возьмем два отдельно стоящих здания площадью 75 м2 и высотой потолков 2,5 м. , но из разных материалов :
1. Толщина стены в два кирпича.
2. Толщина стены — деревянный брус 200 мм. и 150 мм. утеплителя.
Примерные теплопотери здания из кирпича при температуре воздуха -20 С составят 11,7 кВт. (из бруса теплопотери 7,8 кВт.). Соответственно для того чтобы перекрыть теплопотери кирпичного здания потребуется примерно 14 кВт. (из бруса — 9,5 кВт.)
Смотрим по таблице: для того чтобы обеспечить радиаторы отопления кирпичного здания четырнадцатью киловаттами тепла потребуется сечение трубы 32 мм. из армированного полипропилена, а зданию из бруса диаметр труб составит всего 25 мм.

Диаметр трубы для отопления – делаем правильный выбор

Все мы понимаем, что, когда дело касается отопления помещений, на первое место выходят так называемые тепловые потери отопительной системы дома. И их обязательно надо снижать. Это закон теплотехники, от которого зависит эффективность работы самой системы, экономичность потребления топлива и оптимальный температурный режим в комнатах. На тепловые потери влияет много факторов, один из них – это диаметр трубы для отопления. Казалось бы, не самый существенный фактор, но это только на первый взгляд. Поэтому стоит в нем разобраться.

Во-первых, необходимо отметить, что сечение трубы в независимости от материала, из которого она изготовлена, влияет на гидродинамику трубопровода. Поэтому просто так бездумно относится к выбору нельзя. Многие обыватели считают, что, чем больше диаметр трубы, тем эффективнее будет работать отопление дома. Это неправильно, ведь большое сечение требует большого количества теплоносителя, который надо будет нагревать, а значит, затрачивать большое количество энергоносителя. Это первое.

Второе – в таком контуре резко падает давление. А это может привести к тому, что отопление, как таковое, можно считать неработающим. Котел будет греть теплоноситель, но перемещаться по трубному контуру он не будет. Конечный результат – закипание котла.

Выбираем сечение

Подбираем диаметр

В частном домостроении все будет зависеть от того, каким способом будет перемещаться теплоноситель по трубной разводке. Если вами выбрана автономная система с естественной циркуляцией теплоносителя, то сечение обычно выбирается больше, чем в системе с принудительным перемещением. Почему?

  • Для того чтобы горячая вода начала движение вверх, необходима определенная температура и определенный объем самой жидкости. Но это не самое главное. Считается, что есть некоторые чисто технологические позиции, которые влияют на эффективность работы отопления в целом. Одним из таких показателей является скорость водяного потока. Оптимальное ее значение – 0,3-0,7 м/с. Если диаметр труб будет большой, то скорость потока будет снижаться, если наоборот маленький, то скорость просто увеличится.
  • В принудительном отоплении установлен циркуляционный насос, который создает необходимое давление внутри контура. Соответственно, его подбирают под определенную систему так, чтобы скорость внутри разводки также находилась в вышеуказанном диапазоне. Поэтому чаще всего для такой отопительной системы подбираются трубы с меньшим диаметром, ведь насос все равно будет прогонять теплоноситель с расчетной скоростью.

Как рассчитать диаметр

Чтобы провести расчет диаметра трубы для отопления, можно воспользоваться разными способами.

  • Сделать это самостоятельно.
  • Использовать онлайн калькулятор, их можно сегодня найти на разных строительных сайтах.
  • Воспользоваться таблицами.

Кстати, вот одна из таких таблиц на фото ниже.

Таблица диаметров труб

Самостоятельный расчет на самом деле не очень сложный. Но при его проведении приходится учитывать достаточно большой ряд различных показателей, которые влияют на значение тепловых потерь. Поэтому для облегчения проводимого расчета используется одно стандартное соотношение: на 10 м² отапливаемой площади расходуется 1,0 кВт тепловой энергии. Для точности конечного результата к окончательной цифре прибавляется 20%.

К примеру, для отопления дома площадью 100 м² потребуется 10 кВт тепла. Прибавляем к этому значению 20%, получаем 12 кВт (12000 Вт). Теперь по вышеуказанной таблице находите этот показатель и сверяете его с диаметром трубы и скоростью движения теплоносителя. Получается, что вам необходима труба диаметром 15 мм, в которой вода будет перемещаться со скоростью 0,5-0,55 м/с. По всем показателям это оптимальный выбор, который попадает в диапазон оптимальных скоростей. Единственное отметим, что данная таблица применяется для двухконтурной системы. Для одноконтурной есть свои показатели.

Основные размеры трубы

Как видите, правильно подобранное сечение трубопровода для системы отопления играет немаловажную роль в ее эффективной работе. Конечно, необходимо учитывать и материал, из которого труба изготовлена, потому что это влияет на скоростные характеристики теплоносителя. Поэтому здесь вам придется воспользоваться другими таблицами.

Калькулятор тепловых труб

Инструкции по эксплуатации

Наш онлайн-калькулятор тепловых трубок предоставляет следующие данные о производительности тепловых труб: теплопроводность тепловой трубки по диаметру, пропускная способность тепловой трубки (Qmax) по диаметру и ориентации, а также дельта-T с одного конца тепловая трубка к другому. Из этого последнего расчета легко определить тепловое сопротивление тепловой трубы. Все расчеты выполнены для медной тепловой трубы с использованием спеченного фитиля и воды в качестве рабочего тела.

Вот ссылка на калькулятор тепловых трубок.

Тепловая трубка | Секция ввода теплоотвода

Входы калькулятора теплопроводности

Длина тепловой трубы — полная длина тепловой трубки, если испаритель находится на одном конце.

Длина испарителя — длина испарителя — это длина фактического источника тепла.

Длина конденсатора — расстояние между точками входа и выхода тепловой трубы из конденсатора.

Heat Pipe Type — Выберите материал фитиля из спеченного фитиля «Standard» или «Performance». Стандартные фитили позволят вам еще больше сплющить тепловую трубку, прежде чем влиять на максимальную мощность (Qmax). Обратите внимание, что мы можем изменить пористость и толщину фитиля тепловой трубки в соответствии с требованиями вашего приложения, хотя здесь это не показано.

Рабочая температура — это температура пара внутри тепловой трубки. Это число сложно узнать, и точность ввода не критична.Однако используйте среднее значение Tmax окружающей среды и температуры корпуса Tmax. Пример расчета: 50 o C макс. Окружающей среды, 95 o C макс. Для случая = (50 + 95) / 2 = 72,5 o C Рабочая температура.

Раздел результатов по тепловым трубам

Эффективная теплопроводность тепловых труб

В первой таблице рассчитывается эффективная теплопроводность тепловых трубок для диаметров 3–10 мм. Вероятно, нам следовало поставить его последним, поскольку он используется, как только вы выбрали правильный диаметр.Тем не менее, этот рисунок используется в качестве входных данных в программное обеспечение моделирования Excel и / или CFD, такое как FloTHERM. Подробнее о теплопроводности тепловых трубок.

Теплопроводность тепловой трубки

Пропускная способность тепловой трубки (Qmax)

Далее следует график зависимости мощности от угла работы (показан) и соответствующая таблица (не показана). По сути, это дает вам максимальную пропускную способность тепловой трубы (Qmax) для тепловой трубы определенного диаметра под разными углами. При температуре «+90» конденсатор находится непосредственно над испарителем, что упрощает возврат конденсированного пара (воды) в испаритель, отсюда и высокий Qmax.

На этом этапе вам пригодятся несколько рекомендаций по проектированию тепловых трубок.

  • Во-первых, Qmax тепловой трубы является аддитивным, при условии, что каждая тепловая труба (и) находится над источником тепла. В нашем примере это означает, что одна 8-миллиметровая тепловая трубка имеет Qmax 62 o C при горизонтальной работе, а две 8-миллиметровые трубы имеют Qmax 124 o C.
  • Во-вторых, необходимо предусмотреть коэффициент безопасности, чтобы избежать работы трубы с максимальной производительностью. Снижение номинальных характеристик тепловой трубки Qmax на 20-25% является хорошим отраслевым стандартом — в этом случае мощность одной трубки будет чуть менее 50 Вт. Случайные короткие всплески мощности выше этого допустимы, если они все еще ниже номинального значения Qmax. Щелкните здесь, чтобы просмотреть полное руководство по проектированию тепловых трубок.

Пропускная способность тепловой трубы (Qmax)

Расчет теплового сопротивления тепловой трубы

График и таблицу зависимости мощности от Delta-T (показанные ниже) необходимо использовать вместе с приведенным выше графиком. Допустим, мы выбрали 8-миллиметровую тепловую трубку, о которой говорили ранее: в горизонтальном положении она безопасно выдерживает чуть менее 50 Вт (после снижения номинальных характеристик).Если на один конец подать 40 Вт, на другом конце дельта-Т составит 4,3 o ° C (чем ниже, тем лучше). Предположим, мы хотели использовать две 8-миллиметровые тепловые трубки. В этом случае мы могли бы удвоить тепловую мощность до 80 Вт. Однако затем, используя диаграмму, мы все равно будем использовать значение потребляемой мощности 40 Вт, потому что каждая тепловая трубка будет нести 40 Вт, а дельта-T каждой тепловой трубки будет одинаково 4,3 o C. Чтобы рассчитать тепловое сопротивление 8-миллиметровой тепловой трубки, просто разделите detla-T на входную мощность.В этом случае это будет 4,3 / 40 = 0,11 o C на ватт.

Диаграмма, используемая для расчета теплового сопротивления тепловых труб

Плоская тепловая трубка

Последняя часть приведенной информации не является расчетом, это просто некоторое руководство о том, насколько вы можете сплющить тепловые трубки разного диаметра, прежде чем Qmax будет пострадать. Причина, по которой характеристики тепловых трубок ухудшаются по сравнению со стандартными трубами, связана с более толстой фитильной структурой первых.

Мы надеемся, что этот онлайн-калькулятор тепловых трубок окажется для вас полезным. Посетите нашу страницу калькуляторов, чтобы узнать размер радиатора и его характеристики. Ссылки на инструкции по эксплуатации можно найти в калькуляторе или в нашем блоге по теплоотводу. Страница

Цилиндры и трубы — кондуктивные потери тепла

Неизолированный цилиндр или труба

Можно выразить кондуктивные потери тепла через стенку цилиндра или трубы. как

Q = 2 π L (t i — t o ) / [ln (r o / r i ) / k] (1)

, где

Q = теплопередача от цилиндра или трубы (Вт, БТЕ / час)

k = теплопроводность материала трубопровода (Вт / мК или Вт / м o C, БТЕ / (час ) o F фут 2 / фут))

L = длина цилиндра или трубы (м, фут)

π = pi = 3.14 …

t o = температура снаружи трубы или цилиндра (K или o C, o F)

t i = температура внутри трубы или цилиндра (K или o C, o F)

ln = натуральный логарифм

r o = внешний радиус цилиндра или трубы (м, футы)

r i = цилиндр или труба внутри радиус (м, футы)

Изолированный цилиндр или труба

Кондуктивные потери тепла через изолированный цилиндр или трубу можно выразить как

Q = 2 π L (t i — t o ) / [(ln (r o / r i ) / k) + (ln (r s / r o ) / k s )] (2)

где

r s = внешний радиус o f изоляция (м, футы)

k с = теплопроводность изоляционного материала (Вт / мК или Вт / м o C, БТЕ / (час o F ft 2 / фут))

Уравнение 2 с внутренним конвективным тепловым сопротивлением может быть выражено как

Q = 2 π L (t i — t o ) / [1 / (h c r i ) + (ln (r o / r i ) / k) + (ln (r s / r o ) / k s )] (3)

, где

h c = коэффициент конвективной теплопередачи (Вт / м 2 K)

Расчетные данные | WBDG — Руководство по проектированию всего здания

Введение

Этот раздел Руководства по проектированию механической изоляции представляет собой сборник информации и данных, которые могут быть полезны проектировщикам и конечным пользователям систем механической изоляции. Раздел содержит несколько простых калькуляторов, позволяющих рассчитать тепловой поток и температуру поверхности. Включены обсуждения и ссылки на другие более сложные компьютерные программы для выполнения этих вычислений.

Оценка потерь тепла / тепловыделения

Устойчивый одномерный тепловой поток через изоляционные системы регулируется законом Фурье:

где:

q = скорость теплового потока, БТЕ / ч

A = площадь поперечного сечения, нормальная к тепловому потоку, фут 2

k = теплопроводность изоляционного материала, БТЕ-дюйм / ч фут 2 ° F

dT / dx = температурный градиент, ° F / дюйм

Для плоской геометрии конечной толщины уравнение сводится к:

q = k · A · (T 1 –T 2 ) / X

(2)

где:

X = толщина изоляции, дюйм.

Для цилиндрической геометрии уравнение принимает следующий вид:

q = k · A 2 · (T 1 –T 2 ) / (r 2 · ln (r 2 / r 1 ))

(3)

где:

r 2 = внешний радиус, дюйм

r 1 = внутренний радиус, дюйм

A 2 = площадь внешней поверхности, футы 2

Термин r 2 ln (r 2 / r 1 ) иногда называют «эквивалентной толщиной» изоляционного слоя. Эквивалентная толщина — это толщина изоляции, которая при установке на плоской поверхности дала бы тепловой поток, равный потоку тепла на внешней поверхности цилиндрической формы.

Передача тепла от поверхностей представляет собой комбинацию конвекции и излучения. Обычно предполагается, что эти режимы являются аддитивными, и поэтому для оценки теплового потока к / от поверхности можно использовать комбинированный поверхностный коэффициент:

где:

ч с = комбинированный коэффициент поверхности, БТЕ / ч фут 2 ° F

ч c = коэффициент конвекции, БТЕ / ч фут 2 ° F

ч r = коэффициент излучения, БТЕ / h ft 2 ° F

Предполагая, что излучающая среда равна температуре окружающего воздуха, потери / приток тепла на поверхности можно рассчитать как:

q = h с · A · (T surf –T amb )

(5)

Коэффициент излучения обычно оценивается как:

h r = ε · σ · (T surf 4 –T amb 4 ) / (T surf –T amb )

(6)

где:

ε = эмиттанс поверхности

σ = постоянная Стивена-Больцмана (= 0. 1714 x 10 -8 БТЕ / (ч · фут 2 · ° R 4 )

T x = Температура, ° R

Излучательная способность (или коэффициент излучения) поверхности определяется как отношение излучения, испускаемого поверхностью, к излучению, испускаемому черным телом при той же температуре. Эмиттанс — это функция материала, состояния его поверхности и температуры. Таблица с приблизительным коэффициентом излучения обычно используемых материалов приведена в таблице 1.

Таблица 1.Данные об эмиссии широко используемых материалов

Материал Излучение (~ 80 ° F)
Куртка All Service 0,9
Алюминиевая краска 0,5
Алюминий анодированный 0,8
Алюминий, коммерческий лист 0,1
Алюминий с тиснением 0,2 ​​
Алюминий оксидированный 0. 1-0,2
Алюминий полированный 0,04
Сталь с алюминиево-цинковым покрытием 0,06
Холст 0,7-0,9
Мастика цветная 0,9
Медь полированная 0,03
Медь окисленная 0,8
Эластомер или полиизобутилен 0,9
Оцинкованная сталь, окунутая или матовая 0.3
Оцинкованная сталь, новая, полированная 0,1
Чугун или сталь 0,8
Окрашенный металл 0,8
Пластиковая труба или оболочка (ПВХ, ПВДХ или ПЭТ) 0,9
Рубероид и черная мастика 0,9
Резина 0,9
Стеклоткань, пропитанная силиконом 0,9
Нержавеющая сталь, новая, очищенная 0. 2

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Конвекция — это перенос энергии за счет комбинированного действия теплопроводности, накопления энергии и перемешивания. Он классифицируется как принудительная конвекция (когда перемешивающее движение вызывается каким-либо внешним фактором) или естественная конвекция (когда перемешивание происходит в результате разницы плотности, вызванной температурными градиентами). Коэффициенты конвекции (h c ) можно оценить для ряда простых геометрий, используя корреляции данных экспериментальных исследований.В этих исследованиях используются соответствующие безразмерные параметры для корреляции результатов. Incropera и DeWitt представляют ряд таких корреляций в своем тексте «Основные принципы тепломассообмена». Эти корреляции также резюмированы в Стандартной практике ASTM C 680 и в Справочнике ASHRAE 2013 — Основы.

Контроль температуры поверхности

Обычный расчет, связанный с системами механической изоляции, включает определение толщины изоляции, необходимой для регулирования температуры поверхности до определенного значения с учетом рабочей температуры процесса и температуры окружающей среды. Например, может потребоваться рассчитать толщину изоляции резервуара, необходимую для поддержания температуры внешней поверхности на уровне 140 F или ниже, когда температура жидкости в резервуаре составляет 450 F, а температура окружающей среды составляет 80 F.

В установившемся режиме тепловой поток через изоляцию к внешней поверхности равен тепловому потоку от поверхности к окружающему воздуху. В форме уравнения:

или

(k / X) · A · (T hot –T surf ) = h · A · (T surf –T amb )

(8)

Переставив это уравнение, получим:

X = (k / h) · [(T hot –T surf ) / (T surf –T amb )]

(9)

Поскольку отношение температурных перепадов известно, требуемую толщину можно рассчитать умножением на отношение проводимости изоляционного материала к поверхностному коэффициенту.

В приведенном выше примере предположим, что поверхностный коэффициент можно оценить как 1,0 БТЕ / ч фут 2 F, а проводимость используемой изоляции составляет 0,25 БТЕ / ч фут 2 F. Требуемая толщина может тогда можно оценить как:

X = (0,25 / 1,0) [(450–140) / (140–80) = 1,29 дюйма

Эту расчетную толщину можно округлить до следующего доступного размера, вероятно, 1– ½ дюйма.

Для радиального теплового потока рассчитанная толщина будет представлять собой эквивалентную толщину; фактическая толщина (r 2 -r 1 ) будет меньше (см. уравнение (8) выше).

Эту простую процедуру можно использовать как оценку первого порядка. На самом деле поверхностный коэффициент не является постоянным, а изменяется в зависимости от температуры поверхности, скорости воздуха, ориентации и поверхностной эмиссионной способности.

При выполнении этих расчетов важно использовать фактические размеры трубы и изоляции труб. Многие (но не все) изоляционные изделия для труб и трубопроводов соответствуют стандартам размеров, первоначально опубликованным военными в MIL-I-2781, а затем принятым другими организациями, включая ASTM.Стандартные размеры труб и изоляции приведены для справки в Таблице 2. Стандартные размеры труб и изоляции приведены в Таблице 3. Соответствующие размерные данные для гибкой изоляции с закрытыми ячейками приведены в Таблицах 4 и 5.

Для систем механической изоляции также важно понимать, что теплопроводность (k) большинства изоляционных материалов значительно зависит от температуры. В документации производителя обычно приводятся кривые или таблицы зависимости проводимости от температуры.При выполнении расчетов теплопередачи важно использовать «эффективную теплопроводность», которая может быть получена путем интегрирования кривой зависимости проводимости от температуры или (в качестве приближения) с использованием проводимости, рассчитанной при средней температуре через изоляционный слой. . ASTM C 680 предоставляет алгоритмы и методики расчета для включения этих уравнений в компьютерные программы.

Эти сложности легко решаются для различных граничных условий с помощью доступных компьютерных программ, таких как программа NAIMA 3E Plus® (www.pipeinsulation.org).

Пример распечатки программы 3E Plus® показан на Рисунке 1.

Рис. 1. Образец распечатки из программы NAIMA 3E Plus®.

Оценки потерь тепла для труб стандартных размеров приведены в таблицах 6 и 7. Они полезны для быстрой оценки стоимости потерь энергии из-за неизолированных трубопроводов.

Размеры стандартной изоляции труб и трубопроводов

Таблица 2. Внутренний и внешний диаметры стандартной изоляции труб

Размер трубы, NPS Наружный диаметр трубы, дюйм. ID изоляции, дюймы Номинальная толщина изоляции
1 1 – ½ 2 2 – ½ 3 3 – ½ 4 4 – ½ 5
½ 0,84 0,86 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
¾ 1. 05 1,07 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
1 1,315 1,33 3,50 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75
1 – ¼ 1,660 1.68 3,50 5,00 5,56 6,62 7,62 8,62 9,62 10,75 11,75
1 – ½ 1. 900 1,92 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75 12,75
2 2,375 2,41 4.50 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75
2 – ½ 2,875 2,91 5,00 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
3 3,500 3,53 5,56 6. 62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
3 – ½ 4.000 4,03 6,62 7,62 8,62 9,62 10,75 11,75 12,75 12,75 14,00
4 4.500 4,53 6,62 7,62 8.62 9,62 10,75 11,75 12,75 14,00 15,00
4 – ½ 5. 000 5,03 7,62 8,62 9,62 10,75 11,75 12,75 14,00 14,00 15,00
5 5,563 5,64 7,62 8,62 9,62 10.75 11,75 12,75 14,00 15,00 16,00
6 6,625 6,70 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00 17,00
7 7,625 7,70 10,75 11,75 12,75 14. 00 15,00 16,00 17,00 18,00
8 8,625 8,70 11,75 12,75 14,00 12,00 16,00 17,00 18,00 19,00
9 9,625 9,70 12,75 14,00 15,00 16,00 17.00 18,00 19,00 20,00
10 10,75 10,83 14,00 15,00 16,00 17,00 18,00 19,00 20,00 21,00
11 11,75 11,83 15,00 16,00 17,00 18,00 19,00 20. 00 21,00 22,00
12 12,75 12,84 16,00 17,00 18,00 19,00 20,00 21,00 22,00 23,00
14 14,00 14,09 17,00 18,00 19,00 20,00 21,00 22,00 23.00 24,00

Таблица 3. Внутренний и внешний диаметры стандартной изоляции трубок

Размер трубки, CTS Внешний диаметр трубки, дюймы Изоляция ID Номинальная толщина изоляции
1 1 – ½ 2 2 – ½ 3 3 – ½ 4 4 – ½ 5
3/8 0,500 0,52 2. 38 3,50 4,50 5,56 6,62
½ 0,625 0,64 2,88 3,50 4,50 5,56 6,62
¾ 0,875 0,89 2,88 4,00 5,00 6.62 7,62 8,62 9,62 10,75 11,75
1 1,125 1,14 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
1 – ¼ 1,375 1,39 3,50 4,50 5,56 6,62 7. 62 8,62 9,62 10,75 11,75
1 – ½ 1,625 1,64 3,50 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75
2 2,125 2,16 4,00 5,00 6,62 7,62 8,62 9.62 10,75 11,75 12,75
2 – ½ 2,625 2,66 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75
3 3,125 3,16 5,00 6,62 7,62 8,62 9,62 10,75 11. 75 12,75 14,00
3 – ½ 3,625 3,66 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
4 4,125 4,16 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14.00 15,00
5 5,125 5,16 7,62 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00
6 6,125 6,20 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00 17. 00

Таблица 4. Внутренний и внешний диаметры стандартной гибкой изоляции для труб с закрытыми ячейками

Размер трубы, NPS Наружный диаметр трубы, дюйм ID изоляции, дюймы Наружный диаметр изоляции, дюймы
Номинальная толщина изоляции
½ « ¾ « 1 «
½ 0,84 .97 1,87 2,47 2,97
¾ 1.05 1,13 2,03 2,63 3,13
1 1,315 1,44 2,44 2,94 3,44
1 – ¼ 1,660 1,78 2,78 3,38 3,78
1 – ½ 1. 900 2,03 3,03 3,63 4,03
2 2.375 2,50 3,50 4,10 4,50
2 – ½ 2,875 3,00 4,00 4,60 5,00
3 3,500 3,70 4,66 5,26 5,76
3 – ½ 4.000 4,20 5,30 5,90 6,40
4 4. 500 4,70 5,88 6,40 6,90
4 – ½ 5.000
5 5,563 5,76 6,86 7,46 7,96
6 6,625 6,83 7,93 8,53 9,03
7 7,625
8 8.625 8,82 9,92 10,52

Таблица 5. Внутренний и внешний диаметры стандартной гибкой изоляции для труб с закрытыми порами

Номинальный размер трубки, дюймы Внешний диаметр трубки ID изоляции, дюймы Наружный диаметр изоляции, дюймы
Номинальная толщина изоляции
½ « ¾ « 1 «
3/8 0.500. 600 1,500 1,950
½ 0,625. 750 1,650 2,150 2,750
¾ 0,875 1.000 1,950 2,500 3.000
1 1,125 1,250 2,220 2,850 3,250
1 – ¼ 1.375 1,500 2,500 3,100 3,500
1 – ½ 1,625 1,750 2,750 3,350 3,750
2 2,125 2,250 3,250 3,850 4,250
2 – ½ 2,625 2,750 3,750 4,350 4,750
3 3.125 3,250 4,250 4,850 5.250
3 – ½ 3,625 3,750 4,850 5,450 5,950
4 4,125 4,250 5,350 5,950 6.450

Потери тепла в неизолированных трубах и трубопроводах

Таблица 6. Тепловые потери из неизолированной стальной трубы в неподвижный воздух при 80 ° F, БТЕ / ч · фут

Номинальный размер трубы, дюймы Внутренняя температура трубы, ° F
180 280 380 480 580
½ 56,3 138 243 377 545
¾ 68,1 167 296 459 665
1 82,5 203 360 560 813
1 – ¼ 102 251 446 695 1010
1 – ½ 115 283 504 787 1150
2 141 350 623 974 1420
2 – ½ 168 416 743 1160 1700
3 201 499 891 1400 2040
3 – ½ 228 565 1010 1580 2310
4 254 631 1130 1770 2590
4 – ½ 281 697 1250 1960 2860
5 313 777 1390 2180 3190
6 368 915 1640 2580 3770
7 421 1040 1880 2950 4310
8 473 1180 2110 3320 4860
9 525 1310 2340 3680 5400
10 583 1450 2610 4100 6000
12 686 1710 3070 4830 7090
14 747 1860 3340 5260 7720
16 850 2120 3810 6000 8790
18 953 2380 4270 6730 9870
20 1060 2630 4730 7460 10950
24 1260 3150 5660 8920 13100

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Таблица 7. Теплопотери от неизолированной медной трубы к неподвижному воздуху при 80 ° F, БТЕ / ч · фут

Номинальный размер трубки, дюймы Внутренняя температура трубки, ° F
120 150 180 210 240
3/8 10,6 20,6 31,9 44,2 57,5 ​​
½ 12,7 24,7 38,2 53.1 69,2
¾ 16,7 32,7 50,7 70,4 91,9
1 20,7 40,5 62,9 87,5 114
1 – ¼ 24,6 48,3 74,9 104 136
1 – ½ 28,5 55,9 86,9 121 158
2 36.1 71,0 110 154 201
2 – ½ 43,7 86,0 134 187 244
3 51,2 101 157 219 287
3 – ½ 58,7 116 180 251 329
4 66,1 130 203 283 371
5 80.9 159 248 347 454
6 95,6 188 294 410 538
8 125 246 383 536 703
10 154 303 473 661 867
12 183 360 562 786 1031

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Расчет толщины изоляции для труб »Мир трубопроводной инженерии

Когда жидкость проходит по трубе, она теряет тепло в окружающую атмосферу, если ее температура выше, чем температура окружающего воздуха. Если температура трубы ниже температуры окружающего воздуха, она получает тепло от нее. Поскольку трубы обычно изготавливаются из таких металлов, как сталь, медь и т.д., которые очень хорошо проводят тепло, потери тепла будут значительными и очень дорогостоящими. Поэтому важно обеспечить покрытие из материала, который очень плохо проводит тепло, например из минеральной ваты, конопли и т. Д.

Суммарный теплообмен (Q) от трубы через такой изоляционный материал зависит от следующих факторов:

  1. N : Длина трубы.
  2. Tp : рабочая температура жидкости внутри трубы.
  3. Ti : Максимально допустимая температура на внешней поверхности изоляции. Обычно 50 ° C.
  4. Rp : Радиус трубы.
  5. Ri : Радиус изоляции.
  6. k : Теплопроводность изоляционного материала.

Формула стационарной теплопередачи через изоляционный материал, обернутый вокруг трубы, выглядит следующим образом:

Приведенное выше уравнение получено из уравнения Фурье для теплопроводности, для стационарной теплопередачи при радиальной теплопроводности через полый цилиндр.

Пример расчета

Предположим, у нас есть труба диаметром 12 дюймов, по которой течет горячее масло с температурой 200 ° C. Максимально допустимая температура изоляции на внешней стене составляет 50 ° C.Допустимые потери тепла на метр трубы — 80 Вт / м. Используемая изоляция — это стеклянная минеральная вата с теплопроводностью для этого диапазона температур 0,035 Вт / мК. Теперь нам нужно определить необходимую толщину изоляции.

Теплопроводность выражается в Ваттах на метр на Кельвин (Вт / мК), что по сути совпадает с Ваттами на метр на градус Цельсия (Вт / мКл) (Нет множителя при преобразовании из Кельвина в градусы. Таким образом, постепенное изменение Кельвина то же, что и постепенное изменение в градусах Цельсия.)

В приведенной выше формуле Q — общая потеря тепла, а N — длина трубы. Таким образом, Q / N становится допустимой потерей тепла на метр трубы, которая составляет 80 Вт / м.

Q / N = 80 Вт / м.

Диаметр трубы 12 дюймов, следовательно радиус 6 дюймов.

Радиус в метрах: (6 ″ X 25,4) / 1000 = 0,1524 метра.

Итак:

80 = 2π × 0,035 × (200-50) ÷ ln (Ri / 0,1524)

ln (Ri / 0,1524) = 2π × 0,035 × (200-50) / 80 = 0,4123

Следовательно, Ri = Rp × e 0.4123

Ri = 0,1524 × 1,5103 = 0,2302 м

Следовательно, толщина изоляции = Ri — Rp = 0,2302 — 0,1524 = 0,0777

Толщина изоляции = 77,7 мм

Необходимо учитывать дополнительный запас по толщине изоляции, поскольку иногда теплопередача через изоляцию может быть выше, чем конвективная теплопередача за счет воздуха на внешней стене изоляции. В этом случае температура внешней поверхности изоляции может увеличиться более чем до 50 ° C. Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Как это:

Как это загрузка …

Расход трубопровода котла и определение размеров труб

Расход трубопровода котла и определение размеров труб — Расчет расхода

Для получения расчетного расхода при выборе размера насоса используйте следующую формулу: Выполните измерение длины самого длинного пробега в футах и ​​прибавьте к этому измерению 50%. Умножьте это число на 0,04, чтобы получить напор насоса. Напор насоса относится к способности насоса перемещать воду по контуру и всему сопротивлению в контуре или трению контура.Другой метод определения напора насоса — измерение самого длинного участка трубопровода в контуре с последующим добавлением потерь на трение для каждого клапана, колена и фитинга. Для этого необходимо использовать таблицу, которую можно получить у поставщика циркуляционных насосов HVAC.

Расчет БТЕ для труб с горячей водой и плинтуса


БТЕ — это количество энергии, необходимое для подъема 1 фунта воды до 1 ° по Фаренгейту. Вес воды 8,33 фунта. Каждая отдельная комната должна быть рассчитана на необходимое количество БТЕ для удовлетворения спроса, а затем это количество складывается.Это основано на расчете потерь тепла в помещении. Например: для дома с потребностью в тепле 100 000 БТЕ и ΔT 30 ° потребуется расход примерно 7 галлонов в минуту. (немного меньше на основе следующей формулы: (8,33 * 60 * 30 ° ΔT) = X. 100000 / X даст вам 6,7 галлона в минуту. Это означает, что минимальный размер, необходимый для доставки соответствующего количества БТЕ для удовлетворения спроса, будет составлять 1 дюйм трубы сталь или медь.

Delta Δ T

Расход трубопровода котла и размер труб — очень важно, чтобы это было сделано правильно, так как слишком большой расход снижает эффективность, как описано выше, и может иметь пагубные последствия для котла.Все производители чугунных котлов хотят, чтобы дельта Δ T котла находилась в определенном диапазоне. Некоторые из них 20 ° F, а другие 30 ° F. Превышение этого диапазона температур вызовет проблемы с любым котлом, поскольку вы заменяете горячую воду на более холодную воду с более широким диапазоном температур, чем может преодолеть любая инженерия чугунных котлов.

Это то же самое, что нагреть кусок чугуна или стали до экстремальной температуры и затем полить его холодной водой. В конце концов, он треснет. Если чугунный котел треснет, это нехорошо, и его нужно будет заменить.Существуют способы преодоления высокого ΔT — 1) Добавить обходной контур котельной системы между подающей и обратной линиями в трубопроводе рядом с котлом 2) Изменить расположение трубопровода на первичный / вторичный тип трубопровода с развязывающим контуром. 3) Добавьте циркуляционный насос с регулируемой скоростью и регулятором ΔT для поддержания максимального ΔT для котла. 4) Добавить отводную петлю к трубопроводу котла. Некоторые из этих методов лучше других, и потребуется профессионал, чтобы сказать вам, какой из них лучше всего подходит для вашей конкретной установки.Лучший метод не всегда может быть самым дешевым.

Клапаны подачи и определения размеров трубопровода котла

Клапан тройного действия регулирует поток в промышленных трубопроводах.

Расход и размер трубопровода котла

Как рассчитать правильный расход для любой гидравлической системы —

В сфере водяного отопления и охлаждения регулярно используются определенные формулы. Важный из них касается системы, которая использует воду как средство обеспечения комфорта в галлонах в минуту.t ° F

Формула указывает на температуру воды 60 ° F. Однако, поскольку вода 60 ° F слишком холодная для системы водяного отопления и слишком теплая для системы охлажденной воды, для расчета правильного расхода формула должна основываться на более подходящих температурах воды для каждого типа системы, например удельная теплоемкость воды или изменения плотности, возникающие при изменении температуры воды. Кроме того, объем воды меняется, когда она становится горячее или остывает. Как видно из следующего примера, различия настолько минимальны, что стандартная формула отлично работает для всех наших систем отопления и охлаждения.Тогда T будет:

8,04 x 60 x 1,003 x 20 = 9677 BTUH

Чистый эффект незначителен, но есть еще один фактор, который необходимо учитывать для полной оценки. С повышением температуры воды она становится менее вязкой, и поэтому падение давления в ней уменьшается. Когда вода циркулирует при температуре 200 ° F, соответствующее падение давления или «потеря напора» составляет около 80% воды при температуре 60 ° F для типичных небольших гидравлических систем. При расчете с использованием системной кривой расход увеличивается примерно на 10.5%. Теперь вы можете умножить только что рассчитанную новую теплопередачу на процент увеличения потока:

1,105 x 9677 = 10 693 BTUH

Как вы можете видеть, что касается теплопередачи, простой подход «круглого числа» приведет к расчетным потокам, очень близким к потокам «с поправкой на температуру», при условии, что результаты подхода «круглого числа» не будут скорректированы из исходная основа 60 ° F как для теплопередачи, так и для перепада давления в трубопроводе. Факторы «плюс» и «минус» очень тесно уравновешивают друг друга.

В этой статье представлена ​​точная формула для расчета расхода
в галлонах в минуту (галлонов в минуту) для систем водяного отопления
и систем охлаждения.

Выбор подходящего циркуляционного насоса
галлонов в минуту играет важную роль в обеспечении ожидаемой работы вашей системы отопления. Вам нужен циркуляционный насос подходящего размера, чтобы отводить тепло от котла и доставлять его в систему, где находятся люди.При выборе подходящего циркуляционного насоса вам необходимо не только знать правильный галлон в минуту, но также необходимо знать необходимое падение давления для циркуляции необходимого галлона в минуту.

Когда вода течет по трубам и излучению, она «трется» о стенку трубы, вызывая сопротивление трения. Это сопротивление может повлиять на производительность системы обогрева за счет уменьшения желаемой скорости циркулирующего потока, тем самым уменьшая теплопроизводительность системы. Зная, каким будет это сопротивление, вы можете выбрать циркуляционный насос, который сможет преодолеть падение давления в системе.

Как правило, в современных системах мы используем «футы на голову» для описания количества энергии, необходимого для доставки в систему необходимого галлона в минуту. Существуют таблицы размеров труб, в которых рассчитывается падение давления в футах потери энергии для любого расхода через трубу любого размера. Существуют стандартные методы работы с трубопроводами, в которых промышленность ссылается на ограничение количества галлонов в минуту для данного размера трубы. Это основано на двух причинах:

1. Проблемы скорости (насколько быстро вода движется внутри трубы), которые могут создавать проблемы с шумом, а в экстремальных условиях — проблемы с эрозией.

2. Требуемая потеря напора может стать настолько большой, что требуемая производительность НАПОРА циркулятора делает выбор системы очень «недружественным», что может привести к проблемам регулирующего клапана и шума скорости. Промышленным стандартом является выбор трубы с сопротивлением трению от 1 до 4 футов на каждые 100 футов трубы.

Bell & Gossett’s System Syzer помогает определять
галлонов в минуту (галлонов в минуту).

Кстати, Bell & Gossett уже более 50 лет предоставляет инструмент для индустрии гидроники под названием System Syzer.Этот инструмент очень полезен при расчете галлонов в минуту, правильного размера трубы для поддержки галлонов в минуту и ​​соответствующих потерь давления и скорости для любого применения.
Если у вас есть какие-либо вопросы или комментарии, напишите мне по адресу [адрес электронной почты защищен], подпишитесь на меня в Twitter по адресу @Ask_Gcarey или позвоните мне по телефону FIA 1-800-423-7187. ICM

Трубы и калибровка труб | Спиракс Сарко

Размер трубопровода

Важность определения размеров трубопровода

Задача любой системы распределения жидкости — подавать жидкость под нужным давлением к месту использования.Отсюда следует, что падение давления в системе распределения является важной характеристикой.

Размеры трубопровода для жидкостей

Теорема Бернулли (Даниэль Бернулли 1700–1782) обсуждается в Блоке 4 — Измерение расхода. Д’Арси (D’Arcy Thompson 1860–1948) добавил, что для возникновения потока жидкости в точке 1 должно быть больше энергии, чем в точке 2 (см. Рис. 10.2.3). Разница в энергии используется для преодоления сопротивления трения между трубой и текущей жидкостью.

Бернулли связывает изменения в общей энергии текущей жидкости с рассеянием энергии, выраженным либо в терминах потери напора hf (м), либо в виде удельных потерь энергии g hf (Дж / кг).Само по себе это не очень полезно, если не будет возможности предсказать потери давления, которые возникнут в определенных обстоятельствах.

Здесь вводится один из наиболее важных механизмов диссипации энергии в протекающей жидкости, то есть потеря общей механической энергии из-за трения о стенку однородной трубы, по которой проходит устойчивый поток жидкости.

Потери полной энергии жидкости, протекающей по круглой трубе, должны зависеть от:

L = Длина трубы (м)

D = Диаметр трубы (м)

u = Средняя скорость потока жидкости (м / с)

μ = динамическая вязкость жидкости (кг / м · с = Па · с)

курсив-p — основной текст.jpg = Плотность жидкости (кг / м³)

kS = шероховатость стенки трубы * (м)

* Поскольку рассеяние энергии связано с напряжением сдвига на стенке трубы, природа поверхности стенки будет иметь значение, поскольку гладкая поверхность будет взаимодействовать с жидкостью иначе, чем шероховатая поверхность.

Все эти переменные собраны вместе в уравнении Д’Арси-Вейсбаха (часто называемом уравнением Д’Арси) и показаны как уравнение 10.2.1. Это уравнение также вводит безразмерный термин, называемый коэффициентом трения, который связывает абсолютную шероховатость трубы с плотностью, скоростью и вязкостью жидкости и диаметром трубы.

Термин, который связывает плотность, скорость и вязкость жидкости, а также диаметр трубы, называется числом Рейнольдса в честь Осборна Рейнольдса (1842-1912, из колледжа Оуэнс, Манчестер, Соединенное Королевство), который первым применил этот технический подход к потерям энергии при протекании. жидкости около 1883 года.

Уравнение Д’Арси (Уравнение 10.2.1):

Читатели в некоторых частях мира могут узнать уравнение Д’Арси в несколько иной форме, как показано в уравнении 10.2.2. Уравнение 10.2.2 аналогично уравнению 10.2.1, но не содержит константы 4.

Причина разницы в типе используемого коэффициента трения. Важно использовать правильную версию уравнения Д’Арси с выбранным коэффициентом трения. Сопоставление неправильного уравнения с неправильным коэффициентом трения приведет к ошибке 400%, и поэтому важно использовать правильную комбинацию уравнения и коэффициента трения. Во многих учебниках просто не указывается, какие коэффициенты трения определены, и иногда суждение должно основываться на указанных величинах.

Уравнение 10.2.2, как правило, используется теми, кто традиционно работает в имперских единицах измерения, и все еще имеет тенденцию использоваться практикующими специалистами в Соединенных Штатах и ​​регионах Тихоокеанского региона, даже когда указаны метрические размеры труб. Уравнение 10.2.1 обычно используется теми, кто традиционно работает в единицах СИ, и чаще используется европейскими специалистами-практиками. Для того же числа Рейнольдса и относительной шероховатости «коэффициент трения в британской системе мер» будет ровно в четыре раза больше, чем «коэффициент трения в системе СИ».

Коэффициенты трения могут быть определены либо с помощью диаграммы Moody, либо, для турбулентных потоков, могут быть рассчитаны с помощью уравнения 10.2.3, являющегося развитием формулы Колебрука-Уайта.

Однако уравнение 10.2.3 трудно использовать, потому что коэффициент трения появляется с обеих сторон уравнения, и именно по этой причине ручные расчеты, вероятно, будут выполняться с использованием диаграммы Moody.

На диаграмме Moody в стиле СИ шкала коэффициента трения обычно может находиться в диапазоне от 0.002–0,02, тогда как на диаграмме Moody в имперском стиле этот масштаб может находиться в диапазоне от 0,008 до 0,08.

Как правило, для турбулентного потока с числами Рейнольдса от 4000 до 100000 коэффициенты трения, основанные на системе СИ, будут иметь порядок, предложенный уравнением 10.2.4, в то время как коэффициенты трения на основе британской системы мер будут предложенного порядка по уравнению 10.2.5.

Используемый коэффициент трения определяет, будет ли использоваться уравнение Д’Арси: 10.2.1 или 10.2.2.

Для коэффициентов трения, основанных на системе СИ, используйте уравнение 10.2.1; для коэффициентов трения, основанных на британской системе мер, используйте уравнение 10.2.2.

Пример 10.2.1 Водопровод

Определите скорость, коэффициент трения и разницу давлений между двумя точками на расстоянии 1 км в системе горизонтальных трубопроводов постоянного диаметра 150 мм, если расход воды составляет 45 м³ / ч при 15 ° C.

По сути, коэффициент трения зависит от числа Рейнольдса (R e ) текущей жидкости и относительной шероховатости (k S / d) внутренней части трубы; первое рассчитано по уравнению 10.2.6, а последнее — из уравнения 10.2.7.

Число Рейнольдса (R e )

Шероховатость трубы или значение ‘k S ‘ (в некоторых текстах часто цитируется как curly-e — body text.jpg) взято из стандартных таблиц, а для «промышленных стальных труб» обычно принимается равным 0,000 045 метров.

Отсюда определяется относительная шероховатость (как этого требует диаграмма Moody).

Теперь коэффициент трения можно определить по диаграмме Moody, а потерю напора на трение рассчитать по соответствующему уравнению Д’Арси.

Из европейского графика Moody (Рисунок 10.2.4),

Где: k S / D = 0,000 3 R e = 93585: Коэффициент трения (f) = 0,005

Из графика Moody для США / Австралии (рис. 10.2.5),

Где: kS / D = 0,000 3 Re = 93585 Коэффициент трения (f) = 0,02

Такая же потеря напора на трение получается при использовании различных коэффициентов трения и соответствующих уравнений Д’Арси.

На практике, будь то водопроводные или паровые трубы, соблюдается баланс между размером трубы и потерей давления.

.

Добавить комментарий