Расчетный ток формула: формула, онлайн расчет, выбор автомата

Содержание

формула, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

I = P/(U*cos φ),

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю.

Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Расчета тока по мощности: формула, онлайн расчет

Чтобы уберечь себя от проблем с электропроводкой в процессе эксплуатации необходимо изначально правильно рассчитать и выбрать сечение кабеля ибо от этого будет зависеть и пожаробезопасность здания.

Неправильно выбранное сечение кабеля может привести к короткому замыканию и возгоранию электропроводки, а с ней и всего помещения и здания. Выбор сечения зависит от многих параметров, но, пожалуй, самым главным является сила тока.

Формула расчета мощности электрического тока

Если в уже действующей цепи силу тока можно измерить специальными приборами (амперметром), то как быть при проектировании? Ведь мы не можем измерить силу тока в цепи, которой еще нет. В этом случае пользуются расчетным методом.
При известных параметрах мощности, напряжения в сети и характера нагрузки силу тока можно посчитать используя формулу:

Формула для однофазной сети I=P/(U×cosφ)

Формула для трехфазной сети I=P/(1,73×U×cosφ)

  • P — электрическая мощность нагрузки, Вт;
  • U — фактическое напряжение в сети, В;
  • cosφ — коэффициент мощности.

Мощность определяется, исходя из суммарной мощности всех приборов, планируемых в эксплуатации, подключенных к данной сети, это, как правило, паспортные данные приборов или приблизительные значения для аналогичных приборов. Рассчитывается мощность на этапе планирования электропроводки в квартире.

Коэффициент мощности зависит от характера загрузки, например, для нагревательных приборов, ламп освещения он приближен к 1, но во всякой активной нагрузке есть реактивная составляющая, благодаря чему коэффициент мощности принимают равным 0,95. Это всегда нужно учитывать в разных видах электропроводки.

В мощных приборах и оборудовании (электродвигатели, сварочные аппараты и прочее) доля реактивной нагрузки выше, поэтому для подобных приборов коэффициент мощности принимают 0,8.

Напряжение в сети принимают 220 вольт для однофазного тока и 380 вольт для трехфазного, но для большей точности, если есть такая возможность, рекомендуется использовать для расчета фактические значения напряжения, измеренные приборами.

Форма для расчета мощности тока

Способ расчета показателя силы тока при выборе нужного сечения проводов

Наша компания предоставляет услуги по разработке электропроекта в квартирах. Мы подготовили для Вас эту статью с полезной информацией. Надеемся, что Вам она пригодится.

В течение реализации электропроекта, чтобы вычислить возможную потерю напряжения, необходимо обязательно знать такие величины, как нагрузка и длина всех отдельных участков в сети. Только после этого можно будет непосредственно начинать проектирование расположения электрической сети. С имеющимися показателями составляется расчетная схема. Она различна для 3-фазных сетей и 1-фазных.

В первом случае вычисленная нагрузка сети делится на три части, которые распределяются одинаково по 3-м фазам. Однако на практике не всегда получается распределить нагрузку равномерно. Точнее всего это можно сделать с сетями, в которых работают 3-фазные двигатели. Если же в них применяются 1-фазные потребители, то сделать это намного сложнее. Такие сети с 3-фазными двигателями устанавливаются в городских системах снабжения электричеством потребителей. В них обычно действуют 1-фазные приемники электричества, поэтому в расчете нагрузки, поделенной на три равные части, всегда есть небольшие отклонения. Но во время проектирования устанавливаются равные части показателя нагрузки. Такой подход позволяет упростить процесс проектирования. Обычно делается расчетная схема только на одну линейную часть сети, т.е. на одну фазу. Показатели к остальным фазам берутся, как равносильные. В схеме обозначаются дополнительно места монтирования плавких предохранителей и аппаратов защиты сети от возможных сбоев и аварийных ситуаций.

Кроме всего этого во время проектирования электрической сети нужно обязательно учитывать особенность плана здания и разреза его помещений. Это необходимо потому, что в некоторых помещениях ранее уже была установлена электропроводка. На ней обычно указываются электротоки и мощность подключаемых приборов, в число которых входят розетки, осветительные приборы и т.п.

Способ расчета силы тока во время составления проекта базируется на уже существующем плане жилого населенного пункта или производственного предприятия. На нем обозначаются все точки включения разных групп электроприемников. Это могут быть отдельные дома, или просто знания производственного предприятия. При отсутствии такого плана невозможно сделать точный проект проектирования электросети. От этого в последующем зависит качество проведения электромонтажных работ.

На схеме длина отдельного участка электросети помечается согласно выбранному масштабу плана в целом. Если же чертежа нет, то тогда длины отдельных участков сети помечаются в реальном размере. Только в таком случае можно составить проект электросети без погрешностей.

Когда записывается расчетная схема электросети, соблюдать масштабирование, при нанесении на нее участков сети, не обязательно. Главное, чтобы верно были нанесены участки соединения отрезков электросети.

Рисунок A

На рисунке А показан пример схемы электрической линии наружного монтажа. По ней доставляется ток в населенный пункт силой в 380/220В. На ней начерчены участки сети, которые измеряются в метрах. Они располагаются, как слева, так и сверху. Показана и нагрузка с помощью стрелок вправо и вниз. На них указаны расчетные мощности. Их измеряют в киловаттах. На приведенном примере схемы главной, магистральной линией является отрезок АБВ. От него идут ответвления. Это отрезки ВЕ, БД, ВГ.

Вычисление расчетных мощностей электросети

Вычисление расчетных мощностей электросети (нагрузок) достаточно сложная работа. Она выполняется, как при создании проекта «с нуля», так и во время реконструкции объекта и его сетей. Каждый из подключенных приборов (люстра, телевизор, холодильник и т.д.) берут от сети определенное номинальное число мощности при заданном номинальном значении напряжения на зажимах. Данная мощность берется за расчетную величину для конкретного приемника электричества. Потом осуществляется определение значения расчетной мощности для электродвигателя сети. Данная работа намного сложнее, чем предыдущая. Полученный верный результат зависит от крутящегося момента. Он связан с двигателем подключаемых механизмов, в число которых входят вентилятор, станок и транспортер. Вычисленная номинальная мощность помечается на корпусе двигателя. Данный показатель отличается от фактически существующей мощности. Получается, что, например, нагрузка токарного станка число не константное. Оно меняется от толщины стружки, которая снимается с детали, а также от размера объекта обработки.

Вычисление расчетной мощности двигателя является трудной задачей еще и потому, что в ходе работы следует принимать во внимание количество возможно подсоединенных приемников электричества. А это играет важную роль в ходе проведения электромонтажных работ.

Примером тому выступает высчитывание нагрузки для электросети, которая предназначена для обеспечения энергией мастерской. Там функционируют тридцать электрических двигателей. Часть из них всегда работают без остановки. К ним относят двигатели вентиляторов. А вот двигатели станков работают в режиме с определенными перерывами. Часть из них вообще функционируют с неполной нагрузкой. Поэтому расчетная мощность сети в этой ситуации признается за переменную величину. Всегда берется данное значение с запасом, т.е. максимальный показатель. После определяется максимальный средний показатель за промежуток времени, равный тридцати минутам.

Формула расчета мощности электрических приемников, определяемой в кВт.

Р = Кс х Ру

Кc – коэффициент, показывающий величину спроса при максимально возможной нагрузке. Данный показатель рассчитывается при максимальном числе приемников. Если определяется коэффициент двигателя, то необходимо обязательно рассчитывать нагрузку приемников каждого в отдельности.

Py – мощность определенной группы электрических приемников, которая узнается путем сложения номинальной мощности всех приемников. Рассчитывается в кВт.

Вычисление показателя расчетного тока электрической линии, как для одного приемника, так и для группы.

Когда предстоит задача отобрать диаметр сечения электрического прибора, тогда нужно обязательно выяснить и размер расчетного тока. Определяется два показателя. Один базируется на показателе плотности, а другой на условиях нагревания.

Формула вычисления расчетного тока 3-х фазного электрического приемника.

Где Р – нагрузка приемника, рассчитываемая в кВт.

Un- величина номинального напряжения приемника в комплекте с зажимами. Определяется, как величина линейного, межфазного напряжения в сети
Cos ? — константная величина мощности приемника.

Выше представленная формула используется для расчета мощности тока из группы однофазных или 3-х фазных приемников. Ко всему этому прилагается условие того, все имеющиеся приемники подсоединяются в одинаковых размерах к каждой отдельной фазе из трех возможных. Есть же специальная формула расчета мощности для 1-фазного приемника или нескольких, образующих группу, подсоединенных только к одной фазе 3-фазной сети.

Uнф – значение номинального напряжения каждого отдельного приемника, которое равно показателю фазного напряжения сети. В этом месте и осуществляется подсоединение приемников. Вычисляется значение в ваттах.

Cos ? — константная величина мощности приемника. Для лампочек света и нагревательных приборов данное значение равно единице. Это делает процесс расчета быстрее и проще. 
Вычисление тока по существующей расчетной схеме электросети

Для примера берем электросеть небольшого жилого поселка. Она изображена на рисунке А. На нем расчетная нагрузка каждого отдельного дома, которая присоединяется к общей линии электросети, изображается с помощью стрелок. В конце стрелки написано значение, высчитанное в киловаттах. Чтобы создать проект проведения электричества в жилой поселок и отобрать необходимый диаметр сечения проводов, нужно вычислить нагрузку на все имеющиеся участки.

Расчет производится на базе первого закона Кирхгофа. Он говорит, что для любой точки электросети общая сумма поступающих токов может быть равна суммарному значению всех выходящих токов. Этот закон используется только для расчета нагрузок, выраженных в киловаттах.

Пример

Требуется найти наилучший, с точки зрения оптимальности, вариант распределения нагрузки по разным участкам электрической линии. Так на участке, длина которого равна восьмидесяти метров, в самой завершающей точке Г, где происходит вход его в общую сеть, нагрузка равна девяти киловаттам. На ответвлении в сорок метров нагрузка уже рассчитывается путем сложения нагрузок от домов, примыкающих к конечной точке ответвления ВГ. Т.е. 9+6=15 кВт. Чуть далее, на расстоянии в пятьдесят метров, нагрузка в точке В уже равна сумме трех показателей, а именно 15+4+5=24 кВт.

Таким же способом происходит расчет и всех оставшихся участков электросети. Чтобы сделать работу проще и быстрее, все вышеперечисленные значения указываются в строго определенном порядке. На рисунке А величины длины участков электролинии отмечаются в порядке слева и сверху, а нагрузка – справа и снизу. И наконец, любое проектирование электросети обязательно должно учитывать токи в электроустановочных зданиях, где происходит утечка.

Задание

Например, в ситуации с мастерской, 4-хпроводная электролиния, характеризуемая напряжением в 380/220В, осуществляет питание 30 электрических двигателей. Получается, что сумма мощностей равна сорока восьми киловаттам. Т.е. Py1 = 48 кВт. Сумма мощностей лампочек для света равна двум киловаттам. Ру2 = 2 кВт. Константное значение на спрос для осветительной и силовой нагрузки равно соответственно Кс2=0,9 и Кс1=0,35. Среднее константное значение мощности для всей в целом установки равно cos ф=0,75. Вопрос: вычислить расчетный ток электролинии.

Решение

Сначала производим расчет нагрузки электрических двигателей.

P1 = 0,35 х 48 =16,8 кВт

Далее рассчитываем расчетную нагрузку для осветительных приборов.

Р2=0,9 х 2=1,8 кВт.

Теперь считаем конечную сумму мощностей.

Р= 16,8 + 1,8= 18,6 кВт.

Итого, расчетный ток вычисляем по формуле

Вычислив приблизительное значение расчетного тока, можно проверить правильность создания проекта прокладывания электросети и проведения монтажных работ.

Основные расчетные электротехнические формулы

Электрическое сопротивление материала определяется по формулам:

Электрическое сопротивление, Ом, материала

R = U/I, где U — напряжение, В; I — сила тока, А.

Удельное электрическое сопротивление, Ом·м,

ρ=Rs/l. S – сечение проводника, м² ; l – длина проводника, м.

Под удельным электрическим сопротивлением материала понимают сопротивление проводника длиной 1 м и сечением 1 м² при 20°С.

Величина, обратная удельному сопротивлению, называется проводимостью:

v=1/ρ.

Если вместо сечения проводника S задан его диаметр D, то сечение, м², находят по формуле

S= πD²/4, где π =3,14.

Сопротивление материала зависит от температуры. Если материал нагрет до температуры t°С, то его сопротивление, Ом, при этой температуре равно:

Rt= R0[1 + α (t – t0)],

где R0 – сопротивление при начальной температуре t0°С, Ом; α – температурный коэффициент.

Далее приводятся значения α для различных материалов.

Медь,
алюминий,
вольфрам
0,004
Сталь0,006
Латунь0,002

Сопротивление нескольких проводников зависит от способа их соединения. Например, при параллельном соединении сопротивление трех проводников определяется по формуле:

Rоб=R1*R2*R3/(R1R2+R2R3+R3R1)

При последовательном соединении:

Rоб=R1+R2+R3.

Постоянный ток

Постоянный ток применяют для питания устройств связи, транзисторных приборов, стартеров автомобилей, электрокар, а также, для зарядки аккумуляторов.

В качестве источников постоянного тока используют гальванические элементы, солнечные батареи, термоэлектрогенераторы, генераторы постоянного тока.

При параллельном соединении нескольких проводников с током с равными напряжениями:

Iоб = I1+I2+…+In Uоб=U1=U2=…=Un

При последовательном соединении: Iоб = Imin; – где Imin, ток наименьшего по мощности источника тока (генератора, аккумуляторной батареи).

Uоб = U1+U2+…+Un

Основные параметры цепей однофазного переменного тока

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке и для питания большинства осветительных приборов.

Частота переменного тока, Гц:

f= 1/T = np/60, где п — частота вращения генератора, мин -1; р – число пар полюсов генератора.

Мощность однофазного переменного тока:

активная, Вт, Ра = IUcosφ;

реактивная, вар, Q = IUsinφ;

кажущаяся, В А, S = IU =√ (P 2α+Q 2)

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома:

I=U/R; Рa = IU = I²R=U²/R.

Коэффициент мощности в цепи с индуктивной нагрузкой

Cosφ= Рa/IU= Рa/S.

Основные параметры цепей трехфазного переменного тока

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота трехфазного переменного тока 50 Гц.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник». При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку, называемую нулевой или нейтралью (рис. 5а).

При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки — с концом третьей и начало третьей — с концом первой обмотки (рис. 5б).

Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной.

Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные сети – для питания преимущественно осветительных и бытовых нагрузок.

В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой линейный I и фазный Iφ токи равны:

а напряжение U =√3Uφ

При соединении треугольником

I =√3Iφ

а напряжение U = Uφ.

Мощность переменного трехфазного тока:

генератора:

  • активная, Вт, Рг =√3IUcosφ ,
  • реактивная, вар, Q=√3IUsinφ
  • полная, ВА, S = √3IU.

где φ – угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который равен току в линии при соединении обмоток генератора звездой.

приемника:

  • активная, Вт, Рп =3UφIcosφп=√3 IUcosφп ,
  • реактивная, вар, Q=√3 UφIsinφп=√3 UIsinφ
  • полная, ВА, S = √3UI.

где φ – угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который равен току линейному только при соединении звездой.

Подсчет количества теплоты, выделяемой при протекании электрического тока по проводнику.

Количество теплоты, Дж, выделяемой электрическим током в проводнике,

Q=I²Rt где t — время, с.

При определении теплового действия электрического тока учитывают, что 1 кВт·ч выделяет 864 ккал (3617 кДж).

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр “Эл Ко-сервис” Мы всегда рады помочь Вам в решении возникших у Вас проблем.

Инженерно-технический отдел авторизованного сервисного центра “Эл Ко-сервис”

Калькулятор расчёта тока нагрузки для выбора автоматического выключателя

С помощью данного калькулятора Вы можете рассчитать номинальный ток автоматического выключателя по мощности подключаемых через него электроприборов.

Введите значения в форму ниже: суммарную мощность электрооборудования, тип потребителя и параметры сети (фазность и напряжение).

*Примерные значения коэффициента мощности представлены в таблице:

Бытовые электроприборыМощность, Втcos φ
Электроплита1200 — 60001
Обогреватель500 — 20001
Пылесос500-20000,9
Утюг1000 — 20001
Фен600 — 20001
Телевизор100 — 4001
Холодильник150 — 6000,95
СВЧ-печь700 — 20001
Электрочайник1500 — 20001
Лампы накаливания60 — 2501
Люминесцентные лампы20 — 4000,95
Бойлер1500 — 20001
Компьютер350 — 7000,95
Кофеварка650 — 15001
Стиральная машина1500 — 25000,9
ЭлектроинструментМощность, Втcos φ
Электродрель400 — 10000,85
Болгарка600 — 30000,8
Перфоратор500 — 12000,85
Компрессор700 — 25000,7
Электромоторы250 — 30000,7 — 0,8
Вакуумный насос1000 — 25000,85
Электросварка (дуговая)1800 — 25000,3 — 0,6

Расчетные нагрузки промышленных предприятий

3.

Определение коэффициента максимума

При расчетах на стадии технического проекта или рабочих чертежей расчетные нагрузки определяются с учетом коэффициента максимума, величина которого зависит от коэффициента использования и эффективного числа электроприемников.
Под эффективным числом группы электроприемников с различной установленной мощностью и разными режимами работы понимается такое число приемников, одинаковых по мощности и однородных по режиму работы, которое обеспечивают ту же величину расчетной нагрузки, что и рассматриваемая группа различных по мощности и режиму работы электроприемников.
В общем случае эффективное число электроприемников может быть найдено из выражения


Эффективное число электроприемников может быть принято равным фактическому их числу в следующих случаях:
а) когда мощность всех приемников одинакова;
б) при коэффициенте использования Ки>0,8;
в) когда выполняются указанные в табл. 3-5 соотношения между коэффициентом использования и величиной отношения, равного:


где Ру. макс и Ру.мин — соответственно номинальные активные мощности наибольшего и наименьшего электроприемников в группе, квт.
При определении Ру.мин должны быть исключены наиболее мелкие электроприемники, суммарная мощность которых не превосходит 5% мощности всей группы приемников.
Когда указанные условия не выполняются, эффективное число электроприемников определяется в зависимости от величин Р*и n*, вычисляемых пo формулам (*—звездочки, поставленные под буквенными обозначениями, указывают на относительные величины).



где n — общее число электроприемников группы;
— сумма номинальных мощностей всей группы, квт;
— число приемников в группе, номинальная мощность каждого из которых больше или равна половине номинальной мощности наиболее мощного приемника в группе;

— сумма номинальных мощностей этих приемников, квт.

Мелкие электроприемники, суммарная мощность которых не превосходит 5% номинальной мощности всех электроприемников, при определении не учитываются.
В зависимости от величин р* и n* по табл. 3-6 находят величину относительного значения эффективного числа электроприемников:


и определяют эффективное число приемников умножением полученного значения на общее число электроприемников группы:


В зависимости от коэффициента использования Ки и эффективного числа приемников nэ по табл. 3-7 определяется коэффициент максимума Км.
Величины расчетных активной и реактивной мощностей группы электроприемников определяется по формулам:



где Рсм — средняя активная мощность для группы электроприемников за наиболее нагруженную смену, кВт;
tgφ — соответствует характерному для данной группы электроприемников значению фазового угла в режиме максимальной активной мощности.
Полная расчетная мощность определяется из выражения


расчетный ток — по формуле


где U1 — номинальное напряжение сети, кв.
Коэффициент мощности при режиме расчетной нагрузки равен:


При определении эффективного числа электроприемников для большого числа питающих линий, нескольких трансформаторных пунктов, распределительных подстанций и т. п. допускается применять упрощенную методику расчета, которая заключается в следующем.
Для отдельных линий или подстанций, для которых ранее были определены величины номинальной мощности и эффективного числа электроприемников вычисляются мощности условных электроприемников по формуле


где Ру и nэ — соответственно номинальная мощность и эффективное число электроприемников рассматриваемой линии или подстанции.
При этом не учитывается нагрузка резервных электроприемников, ремонтных сварочных трансформаторов и других ремонтных электроприемников, пожарных насосов, а также электроприемников, работающих кратковременно (дренажные насосы, задвижки, вентили, щитовые затворы и т. п.). Нагрузка таких электроприемников учитывается только при расчете питающих эти приемники линий и линий, питающих силовые распределительные пункты, к которым они подключены.
Определение эффективного числа электроприемников, коэффициентов максимума и спроса для условных электроприемников, вычисленных по формуле (3-26), производится методом, изложенным выше для индивидуальных приемников.
При окончательном подсчете нагрузок должны быть учтены реактивные мощности присоединенных к сети батарей конденсаторов (мощности батарей статических конденсаторов учитываются со знаком «минус»), а также потери активной и реактивной мощности в понижающих трансформаторах.
Для электроприемников с малоизменяющейся во времени нагрузкой (насосы водоснабжения, вентиляторы, отопительные и нагревательные приборы, печи сопротивления и т. п.) коэффициент спроса может быть принят равным коэффициенту использования:

Кси (3-27)

Изложенный метод определения расчетных нагрузок рекомендуется применять на всех ступенях и для всех элементов системы электроснабжения промышленных предприятий без введения в расчеты понижающих коэффициентов. Допускается применение коэффициента участия в максимуме в пределах 0,9—0,95 в случаях, когда при определении нагрузок на высших ступенях системы электроснабжения можно ожидать несовпадения во времени максимально загруженных смен, а также при ориентировочных расчетах.
В табл. 3-8 дано число часов использования максимальной мощности для осветительной нагрузки промышленных предприятий.

Пример 3-1.

В отделении цеха промышленного предприятия установлена группа электродвигателей на номинальное напряжение 380 в с длительным режимом работы. По величине коэффициента использования электроприемники разбиваются на три подгруппы, для каждой из которых в табл. 3-9 указаны число и мощность двигателей, суммарная номинальная мощность, величины коэффициентов использования и мощности.
Требуется определить расчетные нагрузки для всей группы электродвигателей отделения.

Расчет тока и мощности | ИП Субботин


Для расчета цепи трехфазного переменного тока и выбора параметров элементов сети, необходимо знать расчетное значение потребляемой активной мощности. Напомним, что физически активная мощность представляет собой энергию, которая выделяется в единицу времени в виде теплоты на активном сопротивлении участка цепи. Единица активной мощности — Вт.

Иногда, в паспорте (или на шильдике) электрооборудования может быть указано значение полной мощности, которая больше активной мощности на величину коэффициента мощности (косинуса фи).

Ниже приведены онлайн калькуляторы для расчета тока и мощности в однофазной сети 220 В или трехфазной сети 380 В, 6 кВ и 10 кВ.

При определении Расчетной мощности или тока нагрузки должны учитываться единичные номинальные мощности или потребляемые токи всех электроприемников и потери мощности в питающих линиях. Номинальные (ещё их называют установленные) мощности указывают в паспортах электроустановок.

Значения коэффициента реактивной мощности зависят от параметров подключаемых электроприемников. В наших онлайн калькуляторах используются самые распространенные значения, в соответствии с действующими нормами и правилами.

Расчет трехфазного и однофазного тока по мощности

При выборе номинального тока защитного коммутационного аппарата (например, автоматического выключателя), необходимо полученное значение расчетного тока округлить к ближайшему большему току по принятому в нашей стране ряду номинальных токов выключателей.

При выборе номинального первичного тока трансформатора тока, также необходимо округлить полученное значение расчетного тока к ближайшему большему току по ряду номинальных токов трансформаторов.

Расчет трехфазной и однофазной мощности по току

Максимальная мощность присоединяемых энергопринимающих устройств, указываемая в технических условиях на технологичкеское присоединение, это мощность, которую могут потреблять из сети элекроприемники при их максимальной единовременной загрузке.

Величина максимальной мощности больше расчетной мощности, так как она не учитывает Коэффициенты спроса и одновременности.

Так, например, абонентам, имеющим однофазный ввод 220 В с максимальной мощностью 5 кВт и вводной коммутационный аппарат на 25 А, получив технические условия на увеличение максимальной мощности до трехфазных 15 кВт, также необходим вводной автоматический выключатель на 25 А, но уже трехфазный, на 380 В.

Наша строительная компания оказывает услуги по проектированию электроснабжения (в том числе временного и резервного) жилых, общественных и промышленных зданий. В составе проекта обязательно должен быть раздел по расчету электрических нагрузок. Предлагаем вам пример расчета электрических нагрузок садового товарищества на территории которого 229 земельных участков, который был выполнен нашей компанией в 2016 году: пример расчета.

Также, мы берем на себя все функции по выполнению строительно-монтажных работ (см. страницу Электромонтажные работы).

Если у вас остались вопросы, наши специалисты с радостью вам помогут. Позвоните нам прямо сейчас по телефону +7 (903) 137-59-05, или воспользуйтесь формой обратной связи.

Как рассчитать / найти номинал трансформатора в кВА

Рассчитать и найти номинал однофазных и трехфазных трансформаторов в кВА

Мы знаем, что трансформатор всегда рассчитывается в кВА. Ниже приведены две простые формулы для определения номинала однофазного и трехфазного трансформаторов .

Найдите номинал однофазного трансформатора

Номинал однофазного трансформатора:

P = V x I.

Номинал однофазного трансформатора в кВА

кВА = (V x I) / 1000

Рейтинг трехфазного трансформатора

Рейтинг трехфазного трансформатора:

P = √3.V x I

Рейтинг трехфазного трансформатора в кВА

кВА = (√3. V x I) / 1000

Но подождите, здесь возникает вопрос… Посмотрите на общие паспортные данные трансформатора на 100 кВА.

Вы что-то заметили ???? В любом случае, мне все равно, каков ваш ответ;), но позвольте мне попытаться объяснить.

Вот рейтинг трансформатора — 100 кВА .

Но первичное или высокое напряжение (ВН) составляет 11000 В = 11 кВ.

И первичный ток на стороне высокого напряжения равен 5.25 ампер.

Также вторичное напряжение или низкое напряжение (НН) составляет 415 вольт

И вторичный ток (ток на стороне низкого напряжения) составляет 139,1 ампер.

Проще говоря,

Мощность трансформатора в кВА = 100 кВА

Первичное напряжение = 11000 = 11 кВ

Первичный ток = 5,25 А

Вторичное напряжение = 415 В

Вторичный ток = 139,1 Ампера.

Теперь рассчитайте номинал трансформатора согласно

P = V x I (первичное напряжение x первичный ток)

P = 11000V x 5.25 A = 57 750 ВА = 57,75 кВА

Или P = V x I (вторичное напряжение x вторичный ток)

P = 415 В x 139,1 A = 57 726 ВА = 57,72 кВА

Еще раз мы заметили, что номинальное значение трансформатора (на паспортной табличке) — 100 кВА , но согласно расчету… это около 57 кВА

Разница происходит из-за незнания того, что мы использовали однофазную формулу вместо трехфазной.

Теперь попробуйте по этой формуле

P = √3 x V x I

P = √3 Vx I (первичное напряжение x первичный ток)

P = √3 x 11000V x 5.25 A = 1,732 x 11000 В x 5,25 A = 100 025 ВА = 100 кВА

Или P = √3 x V x I (вторичные напряжения x вторичный ток)

P = √3 x 415 В x 139,1 A = 1,732 x 415 В x 139,1 A = 99,985 ВА = 99,98 кВА

Рассмотрим в следующем (следующем) примере.

Напряжение (от линии к линии) = 208 В .

Ток (линейный ток) = 139 A

Текущие характеристики трехфазного трансформатора

P = √3 x V x I

P = √3 x 208 x 139A = 1.732 x 208 x 139

P = 50077 VA = 50kVA

Примечание: этот пост был сделан по запросу нашего поклонника страницы Анила Виджая.

Номинальный ток двигателя, v / с Ток полной нагрузки, v / s Номинальный ток

Термины «номинальный ток двигателя », «ток полной нагрузки» и «номинальный ток », скорее всего, запутают инженеров-электриков. Хотя эти термины очень похожи, они немного отличаются друг от друга. Вот четкое определение каждого из них.

Определения

Номинальный ток двигателя

Ток, потребляемый двигателем при полной нагрузке, рассчитанный по формуле, называется номинальным током. Обмотки двигателя рассчитаны на то, чтобы выдерживать номинальный ток во время нормальной работы и немного выше его в течение более короткого периода времени.

Попробуйте: Простой калькулятор номинального тока двигателя с этапами расчета

Ток полной нагрузки двигателя

Ток полной нагрузки двигателя — это ток, потребляемый им при работе с полной нагрузкой и номинальным напряжением.Это измеренное значение, которое также можно рассчитать по формулам. Ток полной нагрузки может изменяться в зависимости от приложенного напряжения. Кроме того, номинальный ток при полной нагрузке (FLC) — это значение, указанное производителем при испытаниях в идеальных условиях.

См. : Асинхронные двигатели — таблицы токов полной нагрузки

Номинальный ток

Номинальный ток такой же, как и номинальный ток. Это ток, потребляемый двигателем при номинальной механической мощности на валу.

Расчет

Формулы для номинального тока, тока полной нагрузки и номинального тока одинаковы:

Для однофазных двигателей переменного тока

Для однофазных двигателей, когда известна мощность в кВт:

Для однофазных двигателей, если известно л.с.:

Для трехфазных двигателей переменного тока

Для трехфазных двигателей, когда известна мощность в кВт:

Для трехфазных двигателей, если известно л.с.:

Где,

  • Напряжение: Междуфазное напряжение для трехфазного источника питания.
  • Рейтинг: Номинальная мощность двигателя в кВт.
  • Коэффициент мощности (cosΦ) : Номинальный коэффициент мощности двигателя.
  • КПД (η) : КПД двигателя.
Калькулятор расчета тока полной нагрузки трансформатора

(амперы)

Калькулятор тока полной нагрузки трансформатора:

Введите напряжение, номинальное значение кВА, затем нажмите кнопку расчета. Вы можете выбрать одно- или трехфазный, а также линейный или линейный с нейтралью вариант, чтобы найти ток при полной нагрузке.После изменения нажмите кнопку расчета, чтобы получить ток в амперах. Кнопка сброса очищает все значения в поле.

Что такое ток полной нагрузки:

Ток полной нагрузки — это не что иное, как максимально допустимый ток обмотки, который используется для разработки системы защиты трансформатора.

Расчет тока трансформатора:

Ток трансформатора можно рассчитать двумя способами, например,

  • Использование метода расчета мощности
  • Использование метода коэффициента трансформации

Использование метода уравнения мощности:

Уравнение мощности можно разделить на два типа: однофазное и трехфазное.Если на входе трансформатора одна фаза (R, Y или B) с нейтралью (N), это означает, что эти трансформаторы называются однофазными трансформаторами. Если трансформатор имеет трехфазный вход, эти трансформаторы называются трехфазным трансформатором.

Расчет тока однофазного трансформатора

Ток полной нагрузки трансформатора I (A) в амперах для однофазного трансформатора равен 1000-кратному номинальному значению трансформатора S (кВА) в кВА (киловольт-ампер), деленному на первичную обмотку V (PV) или вторичное напряжение V (SV) в вольт трансформатора.В общем, ток полной нагрузки равен

I (A) = S (кВА) * 1000 / V (V)

Если трансформатор рассчитан на средние МВА, формула будет

I (A) = S (MVA) * 1000000 / V (V)

Трансформатор имеет два тока: один — первичный, а другой — вторичный.

Если вы хотите рассчитать первичный ток, мы должны учитывать только первичное напряжение, тогда формула будет

Первичный ток в амперах I (P-A) = S (кВА) * 1000 / В (P-V)

Если вы хотите рассчитать вторичный ток, нам нужно взять только вторичное напряжение; Тогда формула будет

Вторичный ток в амперах I (S-A) = S (кВА) * 1000 / В (S-V)

Пример:

Рассчитайте полный ток нагрузки однофазного трансформатора мощностью 25 кВА, 230 вольт.

Ток полной нагрузки в амперах = 25 * 1000/230 = 108,696 A

Расчет тока трехфазного трансформатора

Ток полной нагрузки I (A) в амперах равен 1000-кратному номиналу трансформатора S (кВА) в кВА, деленному на 3-кратное умножение корня между линейным напряжением V (В) в вольтах .

I (A) = S (кВА) * 1000 / (1,732 * V (V) )

, если вы берете напряжение между фазой и нейтралью, V (L-N) в вольтах означает, что формула тока будет

I (A) = S (кВА) * 1000 / (3 * V (L-N) )

Следовательно, для расчета первичного тока I (P-A) в Амперах будет

I (P-A) = S (кВА) * 1000 / (1.732 * В (П-В) )

В (P-V) — первичное напряжение в вольтах

Следовательно, формула для вторичного тока I (S-A) в амперах будет

I (S-A) = S (кВА) * 1000 / (1,732 * V (S-V) )

В (S-V) = Вторичное напряжение в вольтах.

Метод передаточного отношения:

Как известно, отношение между первичным напряжением V (PV) в вольтах и ​​вторичным напряжением V (SV) в вольтах равно отношению вторичного тока I (SA) в Ампер к току вторичной обмотки. первичный ток I (SA) в амперах.Отношение можно записать как,

(V (P-V) / V (S-V) ) = (I (S-A) / I (P-A) ) = (N (P) / N (S)

N p = первичные витки

Н с = Вторичные витки

Если вам известны какие-либо три параметра из вышеперечисленных, вы можете рассчитать ток полной нагрузки трансформатора в амперах на основе коэффициента трансформации.

Давайте перепишем формулу для вторичного тока,

I (S-A) = (V (P-V) * I (P-A) / V (S-V) )

I (S-A) = N (P) * I (P-A) / N (S)

Перепишем формулу первичного тока

I (P-A) = V (S-V) * I (S-A) / V (P-V)

I (P-A) = I (S-A) * N (S) / N (P)

Калькулятор тока полной нагрузки с формулами | jCalc.NET

Калькулятор тока полной нагрузки рассчитывает ток полной нагрузки для нагрузок 1-фазного переменного тока, 3-фазного переменного тока и постоянного тока в кВт, кВА или л.с. Включает пошаговые уравнения.

См. Также

Параметры калькулятора тока полной нагрузки

  • Напряжение (В):
    • Укажите межфазное напряжение V LL для трехфазного источника переменного тока в вольтах.
    • Укажите напряжение между фазой и нейтралью V LN для однофазного источника переменного или постоянного тока.
    • Выберите расположение фаз: 1 фаза переменного тока, 3 фазы переменного тока или постоянного тока.
  • Нагрузка (S): Укажите нагрузку в кВт, кВА, А или л.с. И укажите коэффициент мощности нагрузки ( pf ) (cosΦ), когда нагрузка указывается в кВт или л.с.

Расчет тока полной нагрузки для трехфазного источника переменного тока:

Ток полной нагрузки для 3-фазной нагрузки в кВт рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

Где:

  • S кВт : Номинальная мощность в киловаттах (кВт)
  • В LL : Междуфазное напряжение в вольтах.
  • cosΦ: Коэффициент мощности нагрузки.

Ток полной нагрузки для трехфазной нагрузки в кВА рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ sqrt {3} \ cdot V_ {LL}} \)

Ток полной нагрузки для трехфазной нагрузки в л.с. рассчитывается как:

\ (I = \ displaystyle \ frac {745.7 \ cdot S_ {hp}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

Расчет тока полной нагрузки для однофазной сети переменного тока:

Ток полной нагрузки для однофазной нагрузки в кВт рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {V_ {LN} \ cdot \ cos {\ phi}} \)

Ток полной нагрузки для однофазной нагрузки в кВА рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)

Ток полной нагрузки для однофазной нагрузки в л.с. рассчитывается как:

\ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN} \ cdot \ cos {\ phi}} \)

Расчет тока полной нагрузки для источника постоянного тока:

Ток полной нагрузки для нагрузки постоянного тока в кВт рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {кВт}} {V_ {LN}} \)

Ток полной нагрузки для нагрузки постоянного тока в кВА рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {V_ {LN}} \)

Ток полной нагрузки для нагрузки постоянного тока в л.с. рассчитывается как:

\ (Я = \ Displaystyle \ гидроразрыва {745.7 \ cdot S_ {hp}} {V_ {LN}} \)

Расчет базового тока короткого замыкания | EC&M

Основная электрическая теорема гласит, что величина тока, протекающего через короткое замыкание, зависит от двух переменных величин: напряжения системы и связанного полного сопротивления пути прохождения тока от источника до точки повреждения.

Типичные системные напряжения хорошо знакомы всем нам. Однако связанный полный импеданс пути прохождения тока короткого замыкания требует небольшого пояснения.Этот импеданс обычно включает сопротивление и реактивное сопротивление проводников фидера, любые импедансы трансформаторов (идущие от точки повреждения обратно к источнику энергии) и любое другое оборудование, подключенное на пути прохождения тока.

Рис. 1 представляет собой очень простую однострочную схему со следующим: источник питания, трансформатор и устройство защиты от перегрузки по току (OCPD), имеющее определенный номинал прерывания тока короткого замыкания.

Давайте сначала поговорим об источнике питания.Во многих примерах расчета тока короткого замыкания вы увидите такие ссылки, как «Предположим, что источник питания имеет бесконечную мощность» или «Источник имеет бесконечную шину». Что это означает, и почему так важен выборочный расчет? Все, что говорится, это то, что напряжение источника не имеет внутреннего сопротивления. В результате выборочный расчет становится очень консервативным. Поскольку предполагается, что источник не имеет собственного импеданса, соответствующий ток короткого замыкания будет в худшем случае.

Теперь посмотрим на трансформатор. Импеданс, определяющий величину тока короткого замыкания на его вторичной обмотке, состоит из двух отдельных импедансов: собственного импеданса плюс импеданса вторичных проводников, идущих к точке повреждения. Собственный импеданс трансформатора — это величина его сопротивления протеканию через него тока короткого замыкания.

Теперь у всех трансформаторов есть импеданс, который обычно выражается в процентах напряжения. Это процент от нормального номинального первичного напряжения, которое должно быть приложено к трансформатору, чтобы вызвать протекание номинального тока полной нагрузки во вторичной обмотке, замкнутой накоротко.Например, если трансформатор 480 В / 120 В имеет импеданс 5%, это означает, что 5% от 480 В или 24 В, приложенных к его первичной обмотке, вызовут ток номинальной нагрузки во вторичной обмотке. Если 5% первичного напряжения вызовут такой ток, то 100% первичного напряжения вызовут 20-кратный (100 деленный на 5) вторичный ток с номинальной полной нагрузкой, который пройдет через твердое короткое замыкание на его вторичных выводах. Очевидно, что чем ниже импеданс трансформатора с заданным номиналом кВА, тем больше ток короткого замыкания он может выдать.

Для пояснения возьмем еще один пример. Предположим, у нас есть два трансформатора, каждый мощностью 500 кВА. Поскольку они имеют одинаковый номинал, у каждого из них одинаковый номинальный вторичный ток нагрузки. Предположим, что у одного из блоков импеданс 10%. Следовательно, он может подавать 10-кратный (100 деленный на 10) номинальный вторичный ток нагрузки для короткого замыкания на своих вторичных выводах. Теперь предположим, что второй блок имеет импеданс 2%. Этот блок может подавать намного больший кратный номинальный ток вторичной нагрузки при коротком замыкании на вторичных клеммах: 50 раз (100 деленное на 2) это значение.Сравнивая оба блока, последний трансформатор может обеспечивать в пять раз больше тока короткого замыкания, чем первый блок.

Пример расчета Теперь, когда мы понимаем основные переменные, которые определяют токи короткого замыкания, давайте выполним пример расчета. Как показано на рис. 2, предположим, что у нас есть простая распределительная система с неисправным состоянием. Для ясности и упрощения предположим, что сопротивление линии между вторичной обмоткой трансформатора и местом повреждения пренебрежимо мало.

Шаг 1. Определите вторичный ток полной нагрузки (IsubS). IsubS = 100000 ВА / 240 В = 417 А

Шаг 2. Определите ток короткого замыкания (IsubSC) на клеммах вторичной обмотки трансформатора по его полному сопротивлению. IsubSC * (100% /% ZsubT) x IsubS = (100 / 2,5) * 417 = 16,680A

Следовательно, OCPD должен быть способен безопасно прерывать это количество тока вместе с асимметричным значением тока (обычно это множитель, умноженный на симметричное значение).

По общему признанию, это сильно упрощено. На самом деле при расчете учитываются все импедансы и расстояние до места повреждения относительно трансформатора. Тем не менее, это дает вам представление о том, что входит в анализ тока короткого замыкания.

Как рассчитать максимальный входной переменный ток

Как рассчитать максимальный входной переменный ток.
Ан-21

Знание максимального входного тока источника питания может быть полезно при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений.Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

Номинальная мощность высоковольтного блока питания
Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах. Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. Большинство блоков питания Spellman имеют максимальную номинальную мощность прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

КПД источника питания
КПД источника питания — это отношение входной мощности к выходной мощности. Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например, 80% или 0,8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на эффективность:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности — это отношение реальной мощности к полной используемой мощности. Обычно выражается в виде десятичного числа меньше 1.Реальная мощность выражается в ваттах, а полная мощность — в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0,65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Устройства со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной сети, так что:

375 Вт / 0,65 = 577 ВА

Напряжение входной линии
Нам необходимо знать входное напряжение переменного тока, от которого устройство предназначено для питания .В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано как ± 10%. Нам нужно вычесть 10%, чтобы учесть худший случай, состояние низкой линии:

115Vac — 10% = 103,5Vac

Максимальный входной переменный ток
Если мы возьмем 577 VA и разделим его на 103,5Vac, получим:

577 ВА / 103,5 В переменного тока = 5,57 ампер

Если наше входное напряжение переменного тока однофазное, то у нас есть ответ — 5,57 ампер.

Трехфазное входное напряжение
Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по дизайну будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

КПД источника питания
6000 Вт /.9 = 6666 Вт

Коэффициент мощности
6666 Вт / 0,85 = 7843 ВА

Напряжение входной линии
208 В переменного тока — 10% = 187 В переменного тока

Максимальный входной ток переменного тока
7843 ВА / 187 В переменного тока = 41,94 ампер (если он был однофазным)

Поправка для трехфазного входа
41,94 ампера / √3 (1,73) = 24,21 ампера на фазу

Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

Однофазное уравнение максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

Уравнение максимального входного трехфазного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

Эти расчеты входного тока предназначены для наихудшего случая: предполагается, что блок работает на максимальной мощности, работает при низком уровне напряжения в сети и с учетом КПД и коэффициента мощности.

Щелкните здесь, чтобы загрузить pdf.

Калькулятор тока полной нагрузки генератора

Рассчитывает ток полной нагрузки однофазного или трехфазного генератора.

Параметры

  • Номинальное напряжение (В p ): Номинальное напряжение генератора в вольтах (В).
  • Фаза: Укажите расположение фаз. 1 фаза переменного тока или 3 фазы переменного тока.
  • Мощность генератора (S): Укажите мощность генератора в кВт или кВА.Если номинальная мощность выражена в кВт, вам также необходимо указать коэффициент мощности cos (Φ), который представляет собой число от 0 до 1. Можно использовать приблизительно 0,80, если нагрузка состоит только из двигателей. Для чисто резистивных нагрузок коэффициент мощности cos (Φ) равен 1.

Как рассчитать ток полной нагрузки трехфазного генератора?

Ток полной нагрузки для 3-фазного генератора, указанный в кВт, рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ sqrt {3} \ cdot V_ {LL} \ cdot \ cos {\ phi}} \)

Где,
  • S кВт — мощность генератора в киловаттах (кВт).
  • В LL — это линейное номинальное напряжение генератора в вольтах (В).
  • cos (Φ) — коэффициент мощности.
Например, рассчитайте ток полной нагрузки трехфазного генератора 50 кВт, 480 В. Расчетный коэффициент мощности нагрузки 0,85 .

\ (I = \ displaystyle \ frac {1000 \ cdot 50} {\ sqrt {3} \ cdot 480 \ cdot 0.85} \)

I = 70,8 А.

Ток полной нагрузки для 3-фазного генератора, указанный в кВА, рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ sqrt {3} \ cdot V_ {LL}} \)

Где,
  • S va — номинальная мощность генератора в киловольт-амперах (кВА).
  • В LL — это линейное номинальное напряжение генератора в вольтах (В).
Например, рассчитайте ток полной нагрузки для трехфазного генератора
, 50 кВА, 480 В, .

\ (I = \ displaystyle \ frac {1000 \ cdot 50} {\ sqrt {3} \ cdot 480} \) .

I = 60,1 А.

Как рассчитать ток полной нагрузки однофазного генератора?

Ток полной нагрузки для однофазного генератора, указанный в кВт, рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kW}} {\ cdot V_ {LN} \ cdot \ cos {\ phi}} \)

Где,
  • S кВт — мощность генератора в киловаттах (кВт).
  • В LN — номинальное линейное напряжение генератора в вольтах (В).
  • cos (Φ) — коэффициент мощности.
Например, рассчитайте ток полной нагрузки для однофазного генератора
мощностью 2 кВт, 120 В. Расчетный коэффициент мощности нагрузки 0,85 .

\ (I = \ displaystyle \ frac {1000 \ cdot 5} {120 \ cdot 0.85} \)

I = 19,6 А.

Ток полной нагрузки для 3-фазного генератора, указанный в кВА, рассчитывается как:

\ (I = \ displaystyle \ frac {1000 \ cdot S_ {kVA}} {\ cdot V_ {LN}} \)

Где,
  • S кВт — номинальная мощность генератора в киловольт-амперах (кВА).

Добавить комментарий