Статическое давление в системе отопления
Обеспечить эффективное функционирование обогрева дома или квартиры помогает сбалансированное рабочее статическое давление в системе отопления. Проблемы с его значением приводят к появлению сбоев в эксплуатации, а также к выходу из строя отдельных узлов или системы в целом.
Важно не допускать существенного колебания, особенно в сторону повышения. Также негативно сказывается разбалансировка в конструкциях, имеющих встроенный циркуляционный насос. Он может вызывать кавитационные процессы (закипание) с теплоносителем.
Базовые понятия
Необходимо учитывать, что давление в системе отопления подразумевает исключительно параметр, при котором учитывается только избыточное значение, без учета атмосферного. Характеристики тепловых приборов учитывают именно эти данные. Расчетные данные берутся исходя из общепринятых округленных констант. Они помогают понять в чем измеряется отопление:
0,1 МПа соответствуют 1 Бар и примерно равно 1 атм |
Небольшая погрешность будет при замерах на разных высотах над уровнем моря, но экстремальными ситуациями будем пренебрегать.
В понятие рабочего давления в системе отопления входят два значения:
- статическое;
- динамическое.
Статическое давление – это величина, обусловленная высотой столба воды в системе. При расчетах принято принимать, что десятиметровый подъем обеспечивает дополнительно 1 амт.
Динамическое давление нагнетают циркуляционные помпы, перемещая теплоноситель по магистралям. Оно не определяется исключительно параметрами насосов.
Одним из важных вопросов, появляющихся во время проектирования схемы разводки, бывает, какое давление в системе отопления. Для ответа понадобится учесть способ циркуляции:
- В условиях естественной циркуляции (без водяной помпы) достаточно иметь небольшое превышение над статическим значением, чтобы теплоноситель самостоятельно циркулировал по трубам и радиаторам.
-
Когда определяется параметр для систем с принудительной подачей воды, то его значение в обязательном порядке должно быть значительно выше статического, чтобы по максимуму использовать КПД системы.
При расчетах необходимо учитывать допустимые параметры отдельных элементов схемы, например, эффективную эксплуатацию радиаторов под высоким давлением. Так, чугунные секции в большинстве случаев не способны выдерживать напор более 0,6 МПа (6 атм).
Запуск системы отопления многоэтажного дома не обходится без установленных регуляторов давления на нижних этажах и дополнительных помпах, поднимающих давление, на верхних этажах.
С этой статьей читают: Виды радиаторов отопления и их рабочие характеристики
Методика контроля и учета
Чтобы контролировать давление в отопительной системе частного дома или в собственной квартире, необходимо в разводку вмонтировать манометры. Они будут учитывать исключительно превышение значения над атмосферным параметром. В основе их работы использован деформационный принцип и трубка Бредана. Для замеров, используемых в работе автоматической системы, уместными окажутся аппараты, использующие электроконтактный тип работы.
Давление в системе частного дома
Параметры врезки этих датчиков регламентированы Госехнадзором. Даже если не предполагаются какие-либо проверки со стороны контролирующих органов, то желательно соблюдать правила и нормы, чтобы обеспечить безопасную эксплуатацию систем.
Врезка манометра осуществляется посредством трехходовых кранов. Они позволяют выполнять продувку, обнуление либо замену элементов без вмешательства в работу отопления.
С этой статьей читают: Ремонт батареи отопления
Понижение давления
Если давление в системе отопления многоэтажного дома или в системе частного строения падает, то основной причиной в такой ситуации является возможная разгерметизация отопления на каком-то участке. Контрольные замеры проводятся при выключенных циркуляционных насосах.
Проблемный участок необходимо локализовать, а также надо выявить точное место течи и устранить ее.
Параметр давления в многоквартирных домах отличается высоким значением, так как приходится работать с высоким столбом воды. Для девятиэтажки нужно удерживать около 5 атм, при этом в подвале манометр будет показывать цифры в пределах 4-7 атм. На подводе к такому дому общая теплотрасса обязана иметь 12-15 атм.
Рабочее давление в системе отопления частного дома принято удерживать на уровне 1,5 атм с холодным теплоносителем, а при нагреве оно поднимется до 1,8-2,0 атм.
Когда значение у принудительных систем падает ниже 0,7-0,5 атм, то происходит блокировка насосов на прокачку. Если уровень давления в отопительной системе частного дома дойдет до 3 атм, то в большинстве котлов это будет восприниматься как критический параметр, при котором сработает защита, стравливая избыток теплоносителя автоматически.
Повышение давления
Такое событие встречается реже, но к нему также нужно подготовиться. Основной причиной служит проблема с циркуляцией теплоносителя.
Таблица увеличения объема воды при нагреве
Причины бывают в следующем:
- происходит постоянная подпитка системы, за счет чего в контур поступает дополнительный объем воды;
- случается влияние человеческого фактора, за счет которого были на каком-то участке перекрыты задвижки или пропускные краны;
- бывает, что автоматический регулятор отсекает поступление теплоносителя от катальной, такая ситуация возникает, когда автоматика пытается понизить температуру воды;
- нечастым случаем является блокирование воздушной пробкой прохода теплоносителя; в этой ситуации достаточно стравить часть воды, удалив воздух через кран Маевского.
Для справки. Что такое кран Маевского. Это устройство для спуска воздуха из радиаторов центрального водяного отопления, которое можно открыть с помощью специального разводного ключа, в крайних случаях – отверткой. В быту именуется краном для выпуска воздуха из системы.
Борьба с перепадами давления
Давление в системе отопления многоэтажного дома, так же как и в собственном доме, можно выдерживать на стабильном уровне без существенных перепадов. Для этого применяют вспомогательное оборудование:
- система воздухоотводов;
- расширительные бачки открытого или закрытого типа
Мембранный расширитель
- клапаны аварийного сброса.
Причины возникновения перепадов давления бывают разные. Чаще всего встречается его понижение.
ВИДЕО: Давление в расширительном баке котла
Статическое давление в системе отопления
Испытание системы отопления
Системы отопления обязательно тестируют на устойчивость к давлению
Из этой статьи вы узнаете, что такое статическое и динамическое давление системы отопления, зачем оно нужно и чем отличается. Также будут рассмотрены причины его повышения и понижения и методы их устранения. Помимо этого, речь пойдет о том, каким давлением испытывают различные системы отопления и способы данной проверки.
Виды давления в отопительной системе
Выделяют два вида:
- статистическое;
- динамическое.
Что такое статическое давление системы отопления? Это то, которое создаётся под воздействием силы притяжения. Вода под собственным весом давит на стенки системы с силой пропорциональной высоте, на которую она поднимается. С 10 метров этот показатель равен 1 атмосфере. В статистических системах не задействуют нагнетатели потока, и теплоноситель циркулирует по трубам и радиаторам самотеком. Это открытые системы. Максимальное давление в открытой системе отопления составляет около 1,5 атмосферы. В современном строительстве такие методы практически не применяются, даже при монтаже автономных контуров загородных домов. Это связано с тем, что для такой схемы циркуляции надо применять трубы с большим диаметром.
Динамическое давление в системе отопления можно регулировать
Динамическое давление в закрытой системе отопления создается искусственным повышением скорости потока теплоносителя при помощи электрического насоса. Например, если речь идет о многоэтажках, или крупных магистралях. Хотя, теперь даже в частных домах при монтаже отопления используют насосы.
Важно! Речь идет об избыточном давлении без учета атмосферного.
Каждая из систем отопления имеет свой допустимый предел прочности. Иными словами, может выдержать разную нагрузку. Чтобы узнать какое рабочее давление в закрытой системе отопления, надо к статическому, создаваемому столбом воды, добавить динамическое, нагнетаемое насосами. Для правильной работы системы, показания манометра должны быть стабильными. Манометр – механический прибор, измеряющий силу, с которой вода движется в системе отопления. Он состоит из пружины, стрелки и шкалы. Манометры устанавливаются в ключевых местах.
Перепады давления
Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:
- расширительный бачок;
- клапан аварийного выброса теплоносителя;
- воздухоотводы.
Скачки рабочего давления в системе отопления могут быть спровоцированы различными причинами. В процессе эксплуатации может наблюдаться повышение или понижение давления. Рассмотрим основные причины такого явления и будем разбираться, как с этим бороться.
Причины понижения
При понижении рабочего давления циркуляция воды может просто остановиться, так отключится нагреватель. Помимо этого, низкая скорость теплоносителя приведет к тому, что на отдаленные участи контура вода будет доходить с большими теплопотерями, или, вообще, не дойдет. Причинами такого явления может быть:
Чтобы найти место, где протекает вода надо обследовать каждый узел. Делать это следует очень внимательно. Бывают случаи, когда утечка настолько мизерна, что незаметна визуально. Также могут образоваться микроскопические трещины на теплоносителе.
Если насосы перестают качать воду по трубам, то норма давления в системе отопления не может быть соблюдена. Все насосы электрические, поэтому причиной может стать его обесточивание. В первую очередь, надо проверить его подпитку от электросети. Если все в порядке, возможно, сломался механизм. В этом случае насос придется заменить.
- неисправность расширительного бачка;
Бачок компенсирует расширение воды при нагревании. Он состоит из двух камер, которые разделены резиновой мембраной. Одна камера с газом, вторая для воды. В газовой камере есть ниппель, через который можно подкачивать воздух обычным насосом. Падение давления может наблюдаться, если в газовой камере недостаточный объём воздуха или если порвалась мембрана. В первом случае надо открутить бачок, спустить с него воду и воздух, а потом накачать необходимое количество атмосфер. Во втором случае – только замена. Также причиной падения рабочего давления в системе отопления может быть недостаточный объём бачка. В этом случае необходимо установить дополнительный бак.
Причины повышения
Повышенное давление в открытой или закрытой системе отопления свидетельствует о ее неисправности. Почему это происходит:
- образование воздушной пробки;
Воздушная пробка может стать причиной изменения рабочего давления
Если в трубе есть воздух, он оказывает сильное сопротивление потоку теплоносителя, не пропуская его дальше. Таким образом, горячая вода просто не доходит до некоторых участков. Вследствие — холодные радиаторы и опасность размораживания. Для удаления воздушных пробок в вероятных местах их образования устанавливаются воздухоотводы.
Они автоматически выпускают воздух наружу. Также из-за воздушной пробки рабочее давление может повыситься в радиаторах отопления. В батареях нового образца, вверху, есть клапан, через который можно вручную выпустить воздух.
Могут забиться фильтры воды, а также труба. На ее внутренних стенках образуется налет, который уменьшает диаметр трубы. Проблема решается чисткой. Если не помогает, тогда замена.
- сбой в работе регулятора давления;
Регулятор может частично или полностью перекрывать поток теплоносителя. Есть две причины, по которым он может дать сбой: не настроен или поломан. Соответственно, его нужно или настроить, или поменять.
Если в системе перекрыт кран, движение жидкости останавливается. Обычно такое происходит по халатности.
Испытания системы отопления давлением
Испытание системы отопления под давлением – это обязательное условие ввода ее в эксплуатацию. Система должна соответствовать проекту и быть вымытой. Нагреватель и расширительные бачки должны быть отсоединены. Испытания осуществляются двумя методами:
- водой – гидростатический метод;
- воздухом – манометрический (пневмонический) метод.
Можно выделить два вида гидростатического тестирования: холодное и горячее. Гидравлические испытания системы отопления под давлением осуществляют только в теплое время года. Этот метод предполагает заполнение контура холодной жидкостью полностью. Весь воздух удаляется. Затем при помощи компрессора нагнетается давление и выдерживается какое-то время. На следующем этапе жидкость нагревается.
Манометрические испытания проводятся путем нагнетания воздуха в систему отопления. Для этого применяют специальное оборудование. Опасность такого метода заключается в том, что слабые участки могут просто разлететься в разные стороны. Зато исключается риск затопления и размораживания.
Испытания проводятся как на всей системе сразу, так и на отдельных ее участках. Перед началом следует перекрыть краны, через которые вода и воздух могут выйти наружу.
Методы проверки различных систем отопления
Водяное отопление
Тестирование воздухом – испытательное давление системы отопления повышают до 1,5 бар, затем спускают до 1 бара и оставляют на пять минут. При этом потери не должны превышать 0,1 бар.
Тестирование водой – давление повышают не менее чем до 2 бар. Возможно и больше. Зависит от рабочего давления. Максимальное рабочее давление системы отопления надо умножить на 1,5. За пять минуть потери не должны превышать 0,2 бар.
Панельное
Холодное гидростатическое тестирование – 15 минут с давлением 10 бар, потери не больше 0,1 бара. Горячее тестирование – поднятие температуры в контуре до 60 градусов на семь часов.
Паровое
Испытывают водой, нагнетая 2,5 бара. Дополнительно проверяют водонагреватели (3-4 бара) и насосные установки.
Тепловые сети
Допустимое давление в системе отопления постепенно повышается до уровня выше рабочего на 1,25, но не меньше 16 бар.
По результатам тестирования составляется акт, который является документом, подтверждающим заявленные в нем эксплуатационные характеристики. К ним, в частности, относиться рабочее давление.
com/embed/gmQr6HV-R5A?feature=oembed»>
utepleniedoma.com
Статическое давление в системе отопления
2540 просмотров
Обеспечить эффективное функционирование обогрева дома или квартиры помогает сбалансированное рабочее статическое давление в системе отопления. Проблемы с его значением приводят к появлению сбоев в эксплуатации, а также к выходу из строя отдельных узлов или системы в целом.
Важно не допускать существенного колебания, особенно в сторону повышения. Также негативно сказывается разбалансировка в конструкциях, имеющих встроенный циркуляционный насос. Он может вызывать кавитационные процессы (закипание) с теплоносителем.
Содержание
Базовые понятия
Необходимо учитывать, что давление в системе отопления подразумевает исключительно параметр, при котором учитывается только избыточное значение, без учета атмосферного. Характеристики тепловых приборов учитывают именно эти данные. Расчетные данные берутся исходя из общепринятых округленных констант. Они помогают понять в чем измеряется отопление:
0,1 МПа соответствуют 1 Бар и примерно равно 1 атм |
Небольшая погрешность будет при замерах на разных высотах над уровнем моря, но экстремальными ситуациями будем пренебрегать.
В понятие рабочего давления в системе отопления входят два значения:
- статическое;
- динамическое.
Статическое давление – это величина, обусловленная высотой столба воды в системе. При расчетах принято принимать, что десятиметровый подъем обеспечивает дополнительно 1 амт.
Динамическое давление нагнетают циркуляционные помпы, перемещая теплоноситель по магистралям. Оно не определяется исключительно параметрами насосов.
Одним из важных вопросов, появляющихся во время проектирования схемы разводки, бывает, какое давление в системе отопления. Для ответа понадобится учесть способ циркуляции:
- В условиях естественной циркуляции (без водяной помпы) достаточно иметь небольшое превышение над статическим значением, чтобы теплоноситель самостоятельно циркулировал по трубам и радиаторам.
- Когда определяется параметр для систем с принудительной подачей воды, то его значение в обязательном порядке должно быть значительно выше статического, чтобы по максимуму использовать КПД системы.
При расчетах необходимо учитывать допустимые параметры отдельных элементов схемы, например, эффективную эксплуатацию радиаторов под высоким давлением. Так, чугунные секции в большинстве случаев не способны выдерживать напор более 0,6 МПа (6 атм).
Запуск системы отопления многоэтажного дома не обходится без установленных регуляторов давления на нижних этажах и дополнительных помпах, поднимающих давление, на верхних этажах.
С этой статьей читают: Виды радиаторов отопления и их рабочие характеристики
Методика контроля и учета
Чтобы контролировать давление в отопительной системе частного дома или в собственной квартире, необходимо в разводку вмонтировать манометры. Они будут учитывать исключительно превышение значения над атмосферным параметром. В основе их работы использован деформационный принцип и трубка Бредана. Для замеров, используемых в работе автоматической системы, уместными окажутся аппараты, использующие электроконтактный тип работы.
Давление в системе частного дома
Параметры врезки этих датчиков регламентированы Госехнадзором. Даже если не предполагаются какие-либо проверки со стороны контролирующих органов, то желательно соблюдать правила и нормы, чтобы обеспечить безопасную эксплуатацию систем.
Врезка манометра осуществляется посредством трехходовых кранов. Они позволяют выполнять продувку, обнуление либо замену элементов без вмешательства в работу отопления.
С этой статьей читают: Ремонт батареи отопления
Понижение давления
Если давление в системе отопления многоэтажного дома или в системе частного строения падает, то основной причиной в такой ситуации является возможная разгерметизация отопления на каком-то участке. Контрольные замеры проводятся при выключенных циркуляционных насосах.
Проблемный участок необходимо локализовать, а также надо выявить точное место течи и устранить ее.
Параметр давления в многоквартирных домах отличается высоким значением, так как приходится работать с высоким столбом воды. Для девятиэтажки нужно удерживать около 5 атм, при этом в подвале манометр будет показывать цифры в пределах 4-7 атм. На подводе к такому дому общая теплотрасса обязана иметь 12-15 атм.
Рабочее давление в системе отопления частного дома принято удерживать на уровне 1,5 атм с холодным теплоносителем, а при нагреве оно поднимется до 1,8-2,0 атм.
Когда значение у принудительных систем падает ниже 0,7-0,5 атм, то происходит блокировка насосов на прокачку. Если уровень давления в отопительной системе частного дома дойдет до 3 атм, то в большинстве котлов это будет восприниматься как критический параметр, при котором сработает защита, стравливая избыток теплоносителя автоматически.
Повышение давления
Такое событие встречается реже, но к нему также нужно подготовиться. Основной причиной служит проблема с циркуляцией теплоносителя. Вода в какой-то точке практически стоит без движения.
Таблица увеличения объема воды при нагреве
Причины бывают в следующем:
- происходит постоянная подпитка системы, за счет чего в контур поступает дополнительный объем воды;
- случается влияние человеческого фактора, за счет которого были на каком-то участке перекрыты задвижки или пропускные краны;
- бывает, что автоматический регулятор отсекает поступление теплоносителя от катальной, такая ситуация возникает, когда автоматика пытается понизить температуру воды;
- нечастым случаем является блокирование воздушной пробкой прохода теплоносителя; в этой ситуации достаточно стравить часть воды, удалив воздух через кран Маевского.
Для справки. Что такое кран Маевского. Это устройство для спуска воздуха из радиаторов центрального водяного отопления, которое можно открыть с помощью специального разводного ключа, в крайних случаях – отверткой. В быту именуется краном для выпуска воздуха из системы.
Борьба с перепадами давления
Давление в системе отопления многоэтажного дома, так же как и в собственном доме, можно выдерживать на стабильном уровне без существенных перепадов. Для этого применяют вспомогательное оборудование:
- система воздухоотводов;
- расширительные бачки открытого или закрытого типа
Мембранный расширитель
- клапаны аварийного сброса.
Причины возникновения перепадов давления бывают разные. Чаще всего встречается его понижение.
ВИДЕО: Давление в расширительном баке котла
www.portaltepla.ru
Давление в системе отопления — рабочее, статическое теплоносителя в трубах
Для правильного функционирования отопительной системы крайне важно поддерживать необходимое давление в системе отопления. В случае если этот параметр изменяется в какую-либо сторону, возможны значительные сбои в работе, в зависимости от того, какое давление в системе отопления, они вполне могут привести к серьезной поломке. В частности, значительное повышение давления (до предельного уровня) может стать причиной разрушения отдельных элементов или даже полной остановки системы. А вот снижение давление в системах, где задействован циркуляционный насос, нередко вызывает кавитацию – вскипание теплоносителя. Поэтому обеспечить нормальное давление в системе отопления – это важное условие эффективной работы отопительной системы вашего жилища.
Точки измерения давления в системе отопления- Виды давления
- Воздействие на систему давлением
Чтобы понять, зачем давление в системе отопления, вспомним курс физики и определим, что же такое давление в системе отопления. По сути, это воздействие жидкости на внутренние стенки элементов системы.
При этом рабочее давление в системе отопления – является давление, которое допускает работу системы при включенном нагревательном приборе и насосе. Следует отметить, что данная величина есть сумма: статическое давление в системе отопления, оказываемое столпом теплоносителя, и динамическое давление, которое возникает при работе циркуляционного насоса.
В таком случае рабочее давление – величина, которая обеспечивает нормальную работу всех компонентов системы (насос, нагревательный прибор, расширительный бак), то есть, оптимальное давление в системе отопления. Следует отметить, что не все типы радиаторов способны выдерживать максимальное давление в системе отопления. Наиболее «стойкими» являются биметаллические радиаторы (то есть, состоящие из двух компонентов – например, медь и сталь).
Биметаллический радиатор отопленияА вот монометаллические радиаторы полноценно работают лишь при оптимальном показателе давления, превышение которого может сказаться крайне негативно и максимальное рабочее давление системы отопления вызовет трудности. Кроме того, такого типа радиаторы крайне плохо переносят порой возникающие в системе гидравлические удары (резкое скачкообразное повышение давления). Такие удары могут значительно повредить не только радиаторы, но и остальные элементы отопительной системы. В большинстве случаев причиной возникновения гидравлических ударов является банальная халатность, невнимательность обслуживающего персонала. Даже если вы ставили систему самостоятельно – это не исключает появление таких дефектов.
При пробном запуске отопительной системы следует проводить испытание таким образом, как давление воды в системе отопления. То есть – система запускается с давлением, которое превышает нормальное рабочее примерно в 1,5 раз.
Это позволяет не только проверить качество радиаторов, но и обнаружить незначительные протечки и дефекты системы (если они присутствуют). Такой простой метод позволяет исправить некоторые неполадки до начала отопительного сезона, определив минимальное давление в системе отопления.
Опрессовка системы отопленияВ большинстве многоэтажных домов уровень давления является довольно высоким. И проведение таких проверок – важная необходимость, которая позволяет следить за функциональностью системы. Примечательно, что снижение в ней давления на уровень, который совсем немного ниже рабочего, может привести к серьезной поломке. Мало кто знает, но в многоэтажных домах давление теплоносителя в системе отопления может достигать 16 атмосфер и выше.
Воздействие на систему давлением
Есть два возможных варианта проверки функциональности отопительной системы при помощи давления. В первом случае проверка проходит отдельными участками. Конечно, это более кропотливый и продолжительный процесс, но, в то же время, – он позволяет более тщательно исследовать целостность участка системы и давление в трубах отопления. Кроме того, в случае обнаружения поломки исправить ее намного проще – ведь участок уже перекрыт. Соответственно – нет необходимости тратить время на определение местонахождения неисправности по всей системе, которые датчик давления в системе отопления вам не покажет.
На плане системы отопления отображены отдельные участки, где можно производить замер величины давленияВторой метод состоит именно в проверки всей системы одновременно. Пожалуй, единственное преимущество данного метода – более короткие сроки проведения испытания.
Вне зависимости от того, какой принцип проведения испытания выбран, проходит оно по единой схеме.
- из системы (или отдельного ее сегмента) удаляется воздух.
- подается допустимое давление в системе отопления, которое в 1,5 раз превышает рабочее.
После того, как завершается проверка давлением, система проходит еще одно испытание – на герметичность. Оно выполняется в два этапа. В первую очередь, система заполняется холодным теплоносителем. Далее подключается нагревательный элемент, и система наполняется горячим теплоносителем. Разумеется, испытания считаются успешными в том случае, если не возникло протечки. В случае если поломка есть – производится ремонт. Только после этого можно с уверенностью сказать, что система полностью готова к отопительному сезону и что выполнена норма давления в трубах отопления.
otoplenie-doma.org
Давление в системе отопления – его параметры и нормы регулировки
Давление в системе отопления – один из основных факторов, сказывающихся не только на эффективности работы нагревательного оборудования, но и на самой его работоспособности. При понижении его ниже допустимого значения может возникнуть кавитация. Теплоноситель доходит до температуры кипения, насос ломается, в систему попадает воздух. При превышении максимально допустимого уровня – система отопления разрушается.
Оно гарантирует, что теплоноситель попадет в трубы и радиаторы, расположенные в каждой квартире многоэтажки. Поддержание постоянного давления позволяет минимизировать потери тепла, доставив воду с той же температурой, с которой он «вышел» из котельной.
Полезно: о выборе теплоносителя для системы отопления.
Чтобы более предметно говорить, рассмотрим несколько основных терминов:
- Статическое давление в системе отопления зависит от высоты столба жидкости. Статическое давление в закрытой системе отопления – это давление водяного столба + в расширительном бачке.
- Рабочее давление в системе отопления состоит из статического и динамического. Последнее обусловлено работой насосов и конвективным движением воды в трубах.
Что считается нормой?
Если в контуре используется естественная циркуляция, то нормальное рабочее давление не будет намного выше статического в контуре.
В системе с принудительной циркуляцией (то есть с использованием насосов) оно будет заметно выше статического. Для увеличения коэффициента полезного действия контура выбирается как можно большее. Однако, обязательно должны учитываться значения, допустимые для всех элементов, из которых состоит контур отопления. Например, минимальное давление в системе отопления частного дома определяется характеристиками используемого котла, а для чугунных радиаторов его значение не должно превышать 0,6 МПа.
Читайте: об особенностях систем с естественной и принудительной циркуляцией.
Важные цифры, которые нужно знать. Для частного дома нормальное значение – от полутора до двух атмосфер; для малоэтажных зданий это значение составляет 2-4 атмосферы; для девятиэтажек – 5-7, а для домов большой этажности (16, 20 и выше) – порядка 7-10 атмосфер. Для подземной теплотрассы нормой является 12 атмосфер.
Большое значение также имеет перепад давления в системе отопления: разница между его значениями в зонах подачи и возврата.
Почему перепад столь важен для функционирования системы? Потому, что если он меньше, чем нужно, то скорость движения теплоносителя такова, что он «проскочит» батарею, не успевая ее прогреть.
Перепад
Делается опрессовка системы
Регулировка перепада давления в системе отопления выполняется специальными регуляторами. Их устанавливают в контурах с динамически меняющимся гидрорежимом, чтобы минимизировать его влияние. Также при слишком большом напоре воды регуляторы препятствуют образованию шумов.
Чтобы определить точное расходование теплоносителя с целью предотвращения его превышения, подключают импульсные трубки перед регулирующим клапаном и после него. Регулятор срабатывает (открывается) на увеличение перепада и перепускает воду во всасывающий патрубок, благодаря этому расход теплоносителя остается постоянным .
Регулятор ставят в перемычке между подающей трубой и «обраткой», обвязывающей неконденсаторный котел.
Как осуществлять контроль?
Чтобы контролировать «лишнеее» давление, подключают манометры:
- На входе и выходе (котла, циркулярных насосов, регуляторов перепадов, фильтров и грязевиков).
- На входе в строение.
- На выходе из котельной.
Манометры обязательно устанавливают через 3-ходовые краны. Они предоставляют возможность продувки, сброса в ноль и даже замены без отключения отопительного контура.
Падение и рост
Когда падает давление в системе отопления, это чаще всего происходит из-за утечки воды. Происходит это обычно в местах соединений труб с батареями либо со стояками. Даже небольшая протечка уменьшает его довольно заметно.
Если есть протечка в трубопроводе, то падает статическое давление (проверяют, упало оно или нет, предварительно отключив циркуляционные насосы). Если оно нормальное, то неисправны сами насосы.
Для локализации места протечки по очереди отключают разные участки контура, контролируя при этом уровень давления. Найденный поврежденный участок отсекают от контура и ремонтируют.
Обратите внимание: если установлен регулятор давления в системе отопления, то при поисках неисправности его нужно отключить, поскольку он, возможно, сам отсек некоторые сегменты системы.
Ситуация, когда растет давление в системе отопления, встречается реже, однако тоже возможна. Чаще всего причиной этого является отсутствие движения воды в контуре.
Что нужно сделать, чтобы локализовать место возникновения неисправности?
- Отключаем регулятор (в трех случаях из четырех проблема именно в нем), ведь, возможно, именно он отсек подачу теплоносителя от котельной для уменьшения температуры в контуре.
- Повышение его может быть обусловлено превышением количества теплоносителя благодаря постоянной подпитке (из-за того, что автоматика неисправна либо кто-то неправильно обращался с оборудованием). Решается проблема перекрытием линии питания либо починкой автоматики.
- Если система не включает приборы управления, либо они функционируют нормально, высока вероятность того, что кто-то просто перекрыл кран по ходу движения теплоносителя. Решение проблемы – найти, где перекрыт кран, и открыть его.
- Наименее распространенный вариант – засор грязевика или фильтра либо завоздушивание. В последнем случае определяют местонахождения воздушной пробки и удаляют ее. Материал в тему – как удалить воздушную пробку.
Рекомендуем посмотреть видео о том, как правильно рассчитать параметры расширительного бака для системы отопления.
Надеемся, что материал статьи был вам полезен. Будем сильно благодарны вам, если нажмете на кнопки социальных сетей. Они находятся чуточку ниже. Также рекомендуем вам подписаться в нашу группу вконтакте. Там много полезной и актуальной информации.
kvarremontnik. ru
Как подобрать циркуляционный насос для системы отопления?
Как подобрать циркуляционный насос для системы отопления?
Здравствуйте уважаемые друзья с вами Компания «Пульс». Сегодня мы с вами поговорим о том как подобрать циркуляционный насос для системы отопления, при отсутствии кучи исходных данных. Особенности отопительного контура это циркуляция или расход и температура теплоносителя. Напор определяется гидравлическими потерями системы отопления. Расход компенсирует тепловые потери отапливаемой площади. Далее рассматриваем два дома. Один дом двухэтажный, другой дом 4 этажный ширина и глубина дома 6 на 8 м. Как рассчитать тепловую мощность отапливаемого здания? то есть мы умножаем 0,1 кВт на площадь и получаем тепловую нагрузку на систему отопления величине 0,1 кВт или 100 Ватт на квадратный метр. Надо подходить деликатно и понимать что это среднестатистическая. Среднестатистические теплопотери такого дома не совсем хорошо утепленного. Я например когда в своё время проектировал систему отопления дома из несъемной опалубки, то есть Кому интересно можете в интернете посмотреть что такое несъемная опалубка, это у нас идёт практически дом из пенополистирола, в результате у меня получились такие величины теплопотери, что дом отапливался только тёплыми полами за исключением подвала. В подвале я по углам установил три радиатора. В результате, сколько уже дом эксплуатируется, заказчик сказал что включает радиаторы на процентов 60. И в доме так же тепло, также нужно понимать что 100 Вт воспринимается когда высота этажа в среднем 3 — 4 м. Если высота этажа больше то нужно конечно принимать какую-то надбавку. То с этим понятно. А так 100 Вт мы умножаем на нашу площадь. То есть как здесь, 6м на 8м на 2 этажа, и тоже здесь 6 м на 8 м на 4 этажа. Я думаю всё как бы понятно, дальше основная мысль данной статьи — это расчёт параметров бытового насоса. Чтобы нам подобрать циркуляционный насос, нам необходимо знать два параметра, расход и напор. Под расходом ещё более-менее у всех понятно, то есть мы берём нашем с вами теплопотери, наше с вами то тепло которое необходимо возместить чтобы в доме были соответственные параметры внутреннего воздуха. То есть мы умножаем на киловатты делим на перепад температур и получая метры кубические в час. Так давайте вернемся к первому слайду. Так же хочу ещё сказать, что некоторые нерадивые монтажники при подборе циркуляционного насоса учитывают статический напор. То есть если например у вас у них получились какие-то гидравлические сопротивления, и это посчитано каким-то чудным образом они ещё добавляют 12 м. Этого делать категорически нельзя! Насосы получается подобраны с большими большими запасами, система работает уже не в том режиме в котором должна работать. Статический напор учитывать надо тогда когда мы подбираем убираем узел подпитки. Чтобы вытеснить из системы отопления весь воздух для того чтобы заполнить её полностью. Теплоносители далее с расходом мы разобрались. Теперь разбираемся с напором (H) — это есть произведение H = P*L*K. Измеряется в метрах водяного столба. Что такое (Р) — это потери метров водяного столба на одном метре прямой трубы, (для рассчитанного расхода). Где брать эту величину, находите на сайтах производителя, или там в каких-то там табличных данных, у них есть обычные данные где как раз представлены в таблице, где для величины расхода и для соответственно для того или иного диаметра есть эти потери в метрах водяного столба. Там смотрите не запутались в единицах измерениях потому что кто-то пишет там в выборах это Бараки так далее. Так далее, но раз вам как-то понятнее работать с метрами Водяного столба, то соответственно мы применяем метры водяного столба. (L) — понятно это длина ветки отопления, (k) – это произведение коэффициентов К1 на К2. Если у нас система отопления простая, то есть без применения термостатических головок кто тогда (k) будет равняться 1,3 если у нас есть терморегулирующие головки, то соответственно (k) будет равняться 2,2. То есть Вы учитывайте это. Далее мы непосредственно рассматриваем пример опять же, рассматриваем у нас двухэтажный дом и четырёхэтажный дом, то есть. То есть Понятно 0.86 умножаем на киловатты делим на перепад 90-70. Здесь всегда обращайте внимания что не надо принимать вот такой вот перепад 90-70. Случаи когда у вас идут трубы металлополимерные, полимерная, там всякие полипропиленовые так далее. Принимайте температуру в (t1) в данном случае 85, а лучше 80 градусов. Потому что при 90 градусов срок службы ваших полимерных труб сокращается. И в результате почему мы ещё рекомендуем принимать перепад неклассический 20 градусов и 15 . То есть мы заведомо делим наименьшее число получаемое расход больше, соответственно мы закладываем в запас теплоносителя, закладываем расход теплоносителя, для покрытия всяких погрешностей. Допустим где-то строители утеплили как надо, в общем всякие недоделки. А также когда мы перепад занижаем, получается следующее, что допустим то, что из системы из теплогенератора у нас вышла вода пускай там с температурой допустим 90. То до последнего прибора вот как на картинке 3 например. Здесь будет температура меньше, то есть вода идет по трубе также отдает свое тепло. Пусть и величины небольшие, но, чтобы это не учитывать соответственно мы заведомо заложим такой скажем запас по расходу. Ну и далее высчитываем наш с вами напор, есть 0,027 — это мы берём из табличных данных вот как на картинке 3 пишу потери для трубы Хенко диаметром 20 мм 2,66 мбар. То есть как я и говорил, они в миллибарах бывает пишут. Это есть 0,27 метра водяного столба умножаем на длину трассы и умножаем на 2,2 и получается 2,4 м водяного столба при использовании двадцатой трубы у нас будет теряться в нашей системе отопления.
Какое давление в системе отопления многоэтажного дома должно быть
Давление, которое должно быть в системе отопления многоквартирного дома, регламентируется СНиПами и установленными нормами. При расчете берут во внимание диаметр труб, типы трубопровода и отопительных приборов, расстояние до котельной, этажность.
Виды давления
Говоря о давлении в системе отопления, подразумевают 3 его вида:
- Статическое (манометрическое). При выполнении расчетов его принимают равным 1атм или 0,1 МПа на 10 м.
- Динамическое, возникающее при включении в работу циркуляционного насоса.
- Допустимое рабочее, представляющее собой сумму двух предыдущих.
В первом случае это сила давления теплоносителя в радиаторах, запорной арматуре, трубах. Чем выше этажность дома, тем большее значение приобретает этот показатель. Чтобы преодолеть подъем столба воды применяют мощные насосы.
Второй случай — это давление, возникающее в процессе движения жидкости в системе. А от их суммы — максимального рабочего давления, зависит работа системы в безопасном режиме. В многоэтажном доме его величина достигает 1 МПа.
Требования ГОСТ и СНиП
В современных многоэтажных домах монтаж системы отопления осуществляют, опираясь на требования ГОСТа и СНиП. В нормативной документации оговорен диапазон температур, которые центральное отопление должно обеспечить. Это от 20 до 22 градусов С при параметрах влажности от 45 до 30%.
Чтобы достичь этих показателей, необходим просчет всех нюансов в работе системы еще при разработке проекта. Задача теплотехника — обеспечить минимальную разность значений давления жидкости, циркулирующей в трубах, между нижними и последними этажами дома, сократив тем самым теплопотери.
Этажность | Рабочее давление, атм |
До 5 этажей | 2-4 |
9-10 этажей | 5-7 |
От 10 и выше | 12 |
На реальную величину давления влияют следующие факторы:
- Состояние и мощность оборудования, подающего теплоноситель.
- Диаметр труб, по которым теплоноситель циркулирует в квартире. Бывает, что желая повысить температурные показатели, хозяева сами меняют их диаметр в большую сторону, снижая общее значение давления.
- Расположение конкретной квартиры. В идеале это не должно иметь значения, но в действительности существует зависимость от этажа, и от удаленности от стояка.
- Степень износа трубопровода и нагревательных приборов. При наличии старых батарей и труб не следует ожидать, что показатели давления останутся в норме. Лучше предупредить возникновение нештатных ситуаций, заменив отслужившую свое теплотехнику.
Проверяют рабочее давление в высотном доме при помощи трубчатых деформационных манометров. Если при проектировании системы конструкторы заложили автоматическую регулировку давления и его контроль, то дополнительно устанавливают датчики разных типов. В соответствии с требованиями, прописанными в нормативных документах, контроль осуществляют на наиболее ответственных участках:
- на подаче теплоносителя от источника и на выходе;
- перед насосом, фильтрами, регуляторами давления, грязевиками и после этих элементов;
- на выходе трубопровода из котельной или ТЭЦ, а также на вводе его в дом.
Обратите внимание: 10% разницы между нормативным рабочим давлением на 1 и 9 этаже — это нормально.
Давление в летний период
В период, когда отопление бездействует как в теплосети, так и в системах отопления поддерживается давление, величина которого превышает статическое. В противном случае в систему попадет воздух и трубы начнут коррозировать.
Минимальное значение этого параметра определяется высотой здания плюс запас от 3 до 5 м.
Как поднять давление
Проверки давления в отопительных магистралях многоэтажных домов нужны обязательно. Они позволяют анализировать функциональность системы. Падение уровня давления даже на незначительную величину, может стать причиной серьезных сбоев.
При наличии централизованного отопления систему чаще всего испытывают холодной водой. Падение давления за 0,5 часа на величину большую, чем 0,06 МПа указывает на наличие порыва. Если этого не наблюдается, то система готова к работе.
Непосредственно перед стартом отопительного сезона выполняют проверку водой горячей, подаваемой под максимальным давлением.
Изменения, происходящие в системе отопления многоэтажного дома, чаще всего не зависят от хозяина квартиры. Пытаться повлиять на давление — затея бессмысленная. Единственное, что можно сделать, устранить воздушные пробки, появившиеся из-за неплотных соединений или неправильно выполненной регулировки клапана спуска воздуха.
На наличие проблемы указывает характерный шум в системе. Для отопительных приборов и труб это явление очень опасно:
- Расслаблением резьбы и разрушениями сварных соединений во время вибрации трубопровода.
- Прекращением подачи теплоносителя в отдельные стояки или батареи в связи со сложностями с развоздушиванием системы, невозможностью регулировки, что может привести к ее размораживанию.
- Понижением эффективности системы, если теплоноситель прекращает движение не полностью.
Чтобы предотвратить попадание воздуха в систему необходимо перед ее испытанием в рамках подготовки к отопительному сезону осмотреть все соединения, краны на предмет пропускания воды. Если услышите характерное шипение при пробном запуске системы, немедленно ищите утечку и устраняйте ее.
Можно нанести на стыки мыльный раствор и там, где герметичность нарушена, будут появляться пузырьки.
Иногда давление падает и после замены старых батарей на новые алюминиевые. На поверхности этого металла от контакта с водой появляется тонкая пленка. Побочным продуктом реакции является водород, за счет его сжимания давление снижается.
Вмешиваться в работу системы в этом случае не стоит — проблема носит временный характер и со временем уходит сама по себе. Это происходит исключительно в первое время после монтажа радиаторов.
Повысить напор на верхних этажах высотного здания можно путем установки циркуляционного насоса.
Внимание: самой удаленной точкой трубопровода является угловая комната, следовательно, давление здесь самое меньшее.
Минимальное давление
Из условия, когда перегретая вода в системе отопления не вскипает, принимается минимальное давление.
Температура воды, градусов С | Минимальное давление , атм |
130 | 1,8 |
140 | 2,7 |
150 | 3,9 |
Определить его можно следующим образом:
К высоте дома (геодезической) добавляют запас приблизительно 5 м, чтобы избежать завоздушивания, плюс еще 3 м на сопротивление системы отопления внутри дома. Если на подаче давление недостаточное, то батареи на верхних этажах останутся непрогретыми.
Если взять 5-этажный дом, то на подаче минимальное давление должно иметь значение:
5х3+5+3=23 м = 2,3 ата = 0,23 Мпа
Перепад давления
Чтобы отопительная система нормально выполняла свои функции, перепад давлений, представляющий собой разность между его величинами на подаче и обратке, должен быть определенной и постоянной величины. В числовом выражении он должен быть в пределах от 0,1 до 0,2 МПа.
Отклонение параметра в меньшую сторону свидетельствует о сбое в циркуляции теплоносителя по трубам. Колебание в сторону увеличения показателя — о завоздушивании отопительной системы.
В любом случае нужно искать причину изменения, иначе отдельные элементы могут выйти со строя.
Если давление упало, то проверяют на наличие утечек: отключают насос и наблюдают изменения статического давления. Если оно продолжает снижаться, то ищут место повреждения путем последовательного выведения из схемы разных участков.
В случае, когда статический напор не меняется, то причина кроется в неисправности оборудования.
Стабильность перепада рабочего давления изначально зависит от проектировщиков, от выполненных ими расчетов по гидравлике, а затем правильного монтажа магистрали. Нормально функционирует отопления многоэтажки, при монтаже которого учтены следующие моменты:
- Подающий трубопровод, за редким исключением, находится вверху, обратный внизу.
- Разливы выполнены из труб сечение от 50 до 80 мм, а стояки и подвод к батареям — от 20 до 25 мм.
- В отопительную систему в байпасную линию насоса или перемычку, соединяющую подачу и обратку врезаны регуляторы, гарантирующие, что даже при резких перепадах давления завоздушивание не появится.
- В схеме теплоснабжения присутствует запорная арматура.
Идеальных условий эксплуатации отопительной системы не существует. Всегда есть потери, снижающие показатели давления, но все же они не должны выходить за пределы регламентированными Строительными нормами и правилами РФ СНиП 41-01-2003.
выбор начального значения и диапазона изменения
Непременным элементом любого комплекса отопительного оборудования являются манометры и предохранительный клапан, соответственно визуализирующие процесс изменения давления в системе отопления и предохраняющие от превышения им предельно допустимой величины.
Манометры служат для контроля данной величины, фиксации ее отклонений от номинальных значений. Снижение их на 0,02 МПа (0,2 ат) является сигналом для поиска утечек теплоносителя или проверки достаточности давления газа (воздуха) в расширительном бачке. Ввод системы в эксплуатацию предваряется обязательным этапом гидроиспытаний повышенным давлением, выявляющих места потенциальных утечек, подлежащих заблаговременному ремонту.
Какое давление показывает манометр?
Эта физическая величина характеризует степень сжатия среды, в нашем случае – жидкого теплоносителя, закачанного внутрь системы отопления. Измерить любую физическую величину означает сравнить ее с некоторым эталоном. Процесс измерения давления жидкого теплоносителя любым механическим манометром (вакуумметром, мановакуумметром) представляет сравнение его текущей величины в точке размещения прибора с атмосферным давлением, играющим роль эталона измерения.
Чувствительные элементы манометров (трубчатые пружины, мембраны, и др.) сами находятся под действием атмосферы. Наиболее распространенный пружинный манометр имеет чувствительный элемент, представляющий один виток трубчатой пружины (см. поз. рисунка ниже). Верхний конец трубки запаян и связан поводком 4 с зубчатым сектором 5, сцепленным с шестеренкой 3, на вал которой насажена стрелка 2.
Устройство пружинного манометра.
Исходное положение трубки-пружины 1, соответствующее нулю шкалы измерения, определяется деформацией формы пружины давлением атмосферного воздуха, заполняющего корпус манометра. Жидкость, поступающая внутрь трубки 1, стремится дополнительно деформировать ее, поднимая верхний запаянный конец выше на расстояние l, пропорциональное своему внутреннему давлению. Сдвиг конца трубки-пружины преобразуется передаточным механизмом в поворот стрелки.
Угол φ отклонения последней пропорционален разности полного давления жидкости в трубке-пружине 1 и местного атмосферного. Измеренное таким прибором давление называется манометрическим или избыточным. Точкой его отсчета является не абсолютный нуль величины, эквивалентный отсутствию воздуха вокруг трубки 1 (вакуум), а местное атмосферное давление.
Известны манометры, показывающие абсолютное (без вычета атмосферного) давление среды. Сложное устройство плюс высокая цена препятствуют широкому использованию таких приборов в системах отопления.
Величины давлений, указываемых в паспортах любых котлов, насосов, запорной (регулирующей) арматуры, трубопроводов являются именно манометрическими (избыточными). Измеряемая манометрами избыточная величина используется в гидравлических (тепловых) расчетах отопительных систем (оборудования).
Манометры в системе отопления.
Теплоноситель в статическом и динамическом состояниях
Теплоноситель любой системы отопления может находиться в двух состояниях:
- неподвижном (статическом), когда отсутствует нагрев в гравитационной системе (отсутствует естественная циркуляция) или выключен циркуляционный насос в системе с принудительной циркуляцией;
- подвижном (динамическом), вызываемом такими причинами:
- естественной циркуляцией теплоносителя, побуждаемой градиентом давления вследствие неравномерности прогрева рабочей жидкости вдоль контура гравитационной системы отопления;
- принудительной циркуляцией теплоносителя, побуждаемой циркуляционным насосом;
- тепловым расширением теплоносителя, побуждающим его вытеснять воздух/газ из расширительных баков, занимая освободившиеся объемы.
Неподвижный теплоноситель оказывает на внутренние поверхности элементов системы только (гидро)статическое давление, изучаемое гидростатикой. Движущийся теплоноситель характеризуется (гидро)динамическим давлением, изучаемым гидродинамикой. Оно складывается из статической составляющей, затем части, определяемой тепловым расширением жидкости, наконец составляющей, создаваемой т.наз. скоростным напором движущейся жидкости. Далее, рассматривая движущийся нагретый теплоноситель, будем использовать термин рабочее (результирующее) давление.
Составляющие рабочего давления в системе отопления
Гидростатическая составляющая
Определяется конструкцией системы и не зависит от работы циркуляционного насоса. Известны два конструктивных типа систем:
- открытого типа;
- (герметично) закрытого типа.
Два основных конструктивных типа систем отопления.
Теплоноситель открытой системы имеет свободную поверхность внутри расширительного бака, установленного вверху системы для вывода воздушных пузырей. В любой точке такой системы действует статическое давление, равное весу столба жидкости над ней, плюс местное атмосферное давление. Показания манометра, установленного в нижней точке открытой системы, будут максимальными, вблизи свободной поверхности жидкости они будут почти нулевыми.
(Гидро)статическую составляющую удобно измерять в метрах водяного столба (м. вод. ст), учитывая, что столб воды высотой 10 м любого сечения/формы (независимо от числа/длины горизонтальных участков) создает давление на свое основание, равное 1 ат ≈1 бар.
Рассмотрим некоторую открытую систему отопления (теплоноситель неподвижен).
Статическое давление на разных уровнях.
Над верхним манометром расположен водяной столб высотой 6 м –5,5 м = 0,5 м. Показания прибора будут равны 0,05 ат. Над средним манометром одновременно расположены два столба воды. Первый высотой 6 м –2 м =4 м образован вертикальным двухтрубным стояком с радиаторами, второй – трубопроводом расширительного бака и самим баком, высота столба равна 7 м – 2 м = 5 м. Средний манометр покажет 0,5 ат. Над нижним манометром находится столб воды 7 м –0.7 м = 6,3 м. Его показания будут равны 0,63 ат.
Закрытая система оснащена герметичным расширительным бачком, имеющим две камеры (газовую, жидкостную), разделенные эластичной мембраной. Статическое давление неподвижной (установившийся режим) жидкости на мембрану должно уравновешиваться сопротивлением сжатию газа (сжатого воздуха, азота). Начальное статическое давление холодного теплоносителя закрытой системы, устанавливаемое при первоначальном заполнении, должно удовлетворять двум следующим требованиям:
- быть достаточно большим для предотвращения «завоздушивания» системы через элементы, периодически сообщающиеся с атмосферой: воздухоотводчики, предохранительные клапаны, сливные вентили и др.;
- не слишком превышать давление газа внутри мембранного бачка, чтобы заполняющий систему теплоноситель не занял весь его объем. Иначе не останется места, чтобы принять избыточный объем нагретой рабочей жидкости.
Ориентировочно статическое давление залитого холодного теплоносителя принимается равным 1,5-1,6 ат ≈ 1,5-1,6 бара, что соответствует нижней точке системы на «обратке» перед/после насоса (см.рис. ниже). Именно до такой степени сжат азот, закачиваемый в «фирменные» мембранные бачки заводами-изготовителями. Настроечное давления газа бачка следует устанавливать (подкачивая/стравливая газ) ниже гидростатического давления жидкости в месте установки на 0,1 ат≈0,1 бара, чтобы немного жидкости сразу зашло внутрь. Этот объем пригодится, если непрогретый теплоноситель подвергнется внезапному (ночному) охлаждению. Сжатие рабочей жидкости вследствие такого охлаждения при отсутствии теплоносителя внутри бачка неизбежно вызовет «завоздушивание» системы.
Типовое настроечное давление мембранного бачка (нижняя установка).
На выносных флажках показаны величины типовых статических давлений теплоносителя в характерных точках. Мембранный бачок может быть установлен вверху системы. Типовые статические давления теплоносителя, соответствующие верхней установке бачка, показаны на следующем рисунке.
Настроечное давление газа при верхней установке мембранного бачка.
(Гидро)динамическая составляющая
Движение теплоносителя является следствием работы циркуляционного насоса, создающего в любом замкнутом контуре системы отопления градиент (гидро)динамического давления, непрерывно снижающегося от выходного до входного патрубка насоса. Любой насос характеризуется создаваемым напором H, м. Физический смысл напора – приращение энергии жидкости после прохождения рабочей камеры насоса. Практически напор отождествляют с давлением, интерпретируя его как высоту обеспечиваемого насосом вертикального столба воды (измеряется в м. вод.ст).
Любой (сколь угодно малый) выделенный объем жидкости, ограниченный площадками, перпендикулярными направлению движения, со стороны, обращенной к выходному патрубку, оказывается сжатым сильнее, чем со стороны входного патрубка. Силы, создаваемые давлением на противоположные (по ходу контура) стороны объема, оказываются неуравновешенными, жидкость приходит в движение, описываемое уравнением Бернулли – основным уравнением гидродинамики.
Хотя внутри чувствительных элементов манометров жидкость неподвижна, динамическая составляющая добавляет к исходной статической некоторую величину, воспринимаемую приборами как увеличение (гидро)статического давления теплоносителя. Однако данное увеличение маскируется гораздо большей (1,2 – 2,2 бар/°С) составляющей, возникающей при тепловом расширении. Внутренний объем системы характеризуется распределением результирующего рабочего давления теплоносителя, создаваемого статической, динамической, тепловой составляющими.
Тепловая составляющая
Увеличение объема воды при нагревании на 100 °С равно 4 %. Вроде бы немного. Однако отсутствие свободного объема для размещения избытка жидкости вызывает (в абсолютно жесткой системе) рост давления около 3 ат/°С. Значит, нагрев ледяной воды до температуры кипения вызовет рост этой величины порядка 300 ат!
Реальные трубопроводы деформируются при нагреве теплоносителя. Они расширяются, предоставляя нагревающейся жидкости больший объем. Поэтому реальный рост давления оказывается несколько ниже:
- в стальных (медных) трубах – примерно 2, 2 ат/°С;
- в полиэтиленовых (полипропиленовых), металлопластиковых трубах – около 1,2 ат/°С.
Даже неспециалисту очевидна невозможность допускать подобный прирост, вызываемый тепловым расширением воды. Антифризы, кстати, имеют еще больший коэффициент теплового расширения. Избыточный объем горячего теплоносителя принимает внутрь себя мембранный расширительный бачок.
Принцип работы мембранного бачка.
Важно правильно выбирать емкость расширительного бака. Специалисты,занимаясь этим, оперируют довольно сложными формулами. Однако практика проектирования/эксплуатации закрытых систем отопления выработала следующее правило: емкость расширительного бака равна 10 % емкости системы.
Правильно выбранные емкость/место установки расширительного бака обеспечивают прирост давления теплоносителя (при максимальном нагреве) примерно 1-1,5 ат, что дает конечную величину 2,5-3 ат. Важно также настроить предохранительный клапан системы на величину, примерно равную (превышение максимум 10 % !) предельно допустимой для отопительного котла. Обычно она составляет около 3 ат.
Распределение по системе рабочего давления теплоносителя, показываемого манометрами, будет аналогично распределению гидростатической его составляющей: максимальные значения (заведомо большие гидростатических) будут внизу системы отопления, минимальные (также заведомо большие гидростатических) – вверху системы. Это обстоятельство следует учитывать, выбирая место установки расширительного бачка.
Превышение давлением теплоносителя предельной величины
Если процесс эксплуатации сопровождается частыми «подрывами» предохранительного клапана, следует проанализировать возможные причины происходящего:
- заниженная емкость расширительного бачка;
- завышенное настроечное давление газа/воздуха в бачке;
- неправильно выбрано место установки.
Наличие бачка емкостью от 10 % полной емкости системы отопления является практически стопроцентной гарантией исключения первой причины. Впрочем 10 % не являются минимально возможной емкостью. Грамотно спроектированная система может нормально работать и при меньшей величине. Однако определить достаточность емкости бачка сможет только специалист, владеющий методикой соответствующего расчета.
Вторая и третья причины тесно взаимосвязаны между собой. Предположим, что воздух/газ накачан до 1,5 бара, а место установки бачка выбрано вверху системы, где рабочее давление, допустим, всегда ниже 0,5 бара. Газ всегда будет занимать весь объем бачка, а расширяющийся теплоноситель останется снаружи. Внизу системы теплоноситель будет давить на трубы теплообменника котла особенно сильно. Регулярный «подрыв» предохранительного клапана будет обеспечен!
Снижение давления теплоносителя ниже нормы – следствие его утечки
Если значение величины, показываемое при отсутствии циркуляции, снизилось от 0,02 бара, причем давление газа в расширительном бачке нормальное, можно начинать искать утечки жидкости. Хорошо, если они визуально проявляются. Малозаметные мелкие утечки выявляют путем пневмоиспытаний системы. Закачав внутрь сжатый воздух, ожидают появления шипения (свиста) в местах разгерметизации. Обычно они наблюдаются в местах соединений трубопроводов с элементами арматуры и отопительными приборами.
Хорошей профилактикой появлению утечек теплоносителя является опрессовка системы. Так именуются гидроиспытания повышенным давлением. Для заполнения системы водой используется ручной насос, позволяющий плавно поднимать его величину. Подняв ее до определенного уровня, делают паузу на полчаса, контролируя показания манометра. Спад первоначального значения – явный признак утечки, которую вновь ищут визуально или на слух, проводя пневмоиспытания.
Технология проведения опрессовки.
Технологии проведения ремонтов систем отопления постоянно развиваются. Относительно недавно в России получил распространение метод устранения утечек в трубопроводных системах, включая отопительные, основанный на добавлении внутрь системы (посредством насоса) жидкого герметика. Растворяясь в объеме теплоносителя, герметик в местах утечек реагирует с воздухом, образуя прочный уплотняющий слой, ликвидируя любые течи за 1-7 дней (срок определяется размерами дефектов).
Соотношение герметик/теплоноситель для продукта германской марки BCG равно 1:100. Поэтому ремонт системы емкостью 100-200 л обеспечит всего 1-2 л герметика.
Построение пьезометрического графика для водяной тепловой сети
Приветствую Вас, дорогие и уважаемые читатели сайта “world-engineer.ru”. При проектировании и эксплуатации водяных тепловых сетей широко используется пьезометрический график или как его еще называют пьезометр. Пьезометрический график представляет собой графическое изображение напоров в подающих и обратных трубопроводах тепловой сети относительно местности, по которому, проложена водяная тепловая сеть. При построении пьезометрического графика необходимо учитывать:
— геодезический профиль местности, по которому проложена сеть;
— высоты зданий присоединенных к тепловой сети;
— перепады давлений в системах отопления, вентиляции и ГВС.
Построение пьезометрического графика (пьезометра) выполняется в следующей последовательности:
- В аксометрической проекции изображается водяная 2-х трубная тепловая сеть, для которой строится пьезометрический график.
- Сверху аксометрической проекции проводят оси пьезометрического графика. На горизонтальной оси откладывается длина тепловой оси. На вертикальной оси откладываются напоры в подающем и обратном трубопроводах.
- Наносятся геодезический профиль местности, по которому проложена головная магистраль водяной тепловой сети и ответвления. На геодезическом профиле местности откладываются максимальные высоты зданий для всех потребителей теплоты присоединенных к тепловой сети.
- Наносятся линии статического напора для водяной тепловой сети.
Статический напор в водяной тепловой сети должен соответствовать полному напору, который должны развивать подпиточные насосы. Величина статического напора определяется по следующим условиям:
— созданием избыточного давления не менее 0,05 МПа в верхних точках отопительных систем для зданий расположенных на наиболее высоком геодезическом уровне.
НСТ >= ZЗД + hЗД + 5
ZЗД – геодезическая отметка наиболее высокого зданий в жилом районе или на промышленном предприятии.
hЗД – геометрическая высота наиболее высокого зданий в жилом районе или на промышленном предприятии.
— не менее величины давления вскипания сетевой воды в подающем трубопроводе тепловой сети:
НСТ > НВСКИППОД
Для стандартных температурных графиков сетевой воды давление вскипания в подающем трубопроводе НВСКИППОД составляет, при:
τ 01Р / τ02Р = 150/70 и НВСКИППОД = 47 м (0,47 МПа)
τ 01Р / τ02Р = 140/70 и НВСКИППОД = 36 м.вод.ст. (0,36 МПа)
τ 01Р / τ02Р = 130/70 и НВСКИППОД = 27 м.вод.ст. (0,27 МПа)
τ 01Р / τ02Р = 120/70 и НВСКИППОД = 20 м. вод.ст. (0,2 МПа)
τ 01Р / τ02Р = 1410/70 и НВСКИППОД = 14 м.вод.ст. (0,14 МПа)
τ 01Р / τ02Р = 105/70 и НВСКИППОД = 12 м.вод.ст. (0,12 МПа)
τ 01Р / τ02Р = 95/70 и НВСКИППОД = 8 м.вод.ст. (0,08 МПа)
- Строится линия пьезометрического напора для обратного трубопровода тепловой сети. Определяются граничные условия во всасывающих патрубках сетевых насосов должно поддерживаться избыточное давление не ниже 50 кПа (для предупреждения кавитации насосов) и следовательно пьезометрический напор на всасывающих патрубках сетевых насосов должен быть не ниже 5 м.вод. ст.
НВС >= 5 м.вод.ст.
Как правило, при отсутствии точных данных величина пьезометрического напора на всасывающих патрубках и сетевых насосах принимается равной от 10-15 м. вод.ст.
НВС = 10-15 м.вод.ст.
И затем для каждого участка обратного трубопровода тепловой сети по оси напоров откладываются полные потери давления и полные потери напора, которые берутся из результатов гидравлического расчета.
- Изображаются линии располагаемого напора для потребителей теплоты.
ΔНПОТРЕБ, м – величина располагаемого напора для потребителей теплоты вычисляется:
ΔНПОТРЕБ = НПОТРЕБПОД — НПОТРЕБОБР
НПОТРЕБПОД – напор сетевой воды в подающем трубопроводе тепловой сети и на входе в системы отопления, вентиляции и ГВС.
НПОТРЕБОБР – напор сетевой воды в обратном трубопроводе тепловой сети и на входе в системы отопления, вентиляции и ГВС.
Согласно последней формуле, величина ΔНПОТРЕБ определяет потери напора в коммуникациях самих потребителей теплоты, т.е. в их системе отопления, вентиляции, ГВС.
При отсутствии точных данных для ориентировочного построения пьезометрического графика принимаем следующие величины ΔНПОТРЕБ:
А) при зависимой схеме присоединения систем отопления и вентиляции зданий без использования элеваторов от 6 до 10 м.вод.ст.
Б) при независимой схеме присоединения систем отопления и вентиляции зданий без использования элеваторов от 7 до 15 м.вод.ст.
В) при зависимой схеме присоединения систем отопления и вентиляции зданий с использованием элеваторов от 15 до 20 м.вод.ст.
Г) при последовательном двухступенчатом подключении подогревателей ГВС от 20 до 27 м.вод.ст.
- Строится линия пьезометрического напора для подающего трубопровода тепловой сети (построение выполняется так же как в п.5).
- Изображается линия потерь напора в тепло-приготовительной установке на источнике теплоснабжения, т.е. либо в сетевых подогревателях, либо в водогрейных котлах. ΔНИСТ, м.
Эти потери напора зависят от типа и количества оборудования на источнике теплоснабжения и как правило принимается равным:
ΔНИСТ = 20-25 м.
Надеюсь, что теперь всем стало понятно, как строить пьезометр и Вы теперь знаете, как построить пьезометрический график.
Поделиться ссылкой:
Типы насосных систем и их влияние на эффективность и надежность насосного оборудования. Часть 1 — Статьи по теме гидравлических систем. Принципы работы инженерных сетей.
Часть 1: Тип гидравлической системы.
Насосная система — достаточно условное, обобщающие понятие, принятое для обозначения совокупности систем и групп оборудования используемых в искусственных напорных гидравлических системах.
Насосная система включает в себя трубопроводную систему, группу насосов, систему управления, диспетчеризации, запорной и регулирующей трубопроводной арматуры.
Соответственно, говоря о типах насосных систем, мы говорим и различных сочетаниях различных типов подсистем, выполняемых насосной системой задач.
Рассмотрим влияние отдельных подсистем и их видов на эффективность и надежность насосной системы в целом…
Первое, что нужно учитывать при анализе существующей насосной системы или проектировании новой, это тип гидравлической системы, который коррелирует с характером выполняемой задачи.
Обычно выделяют два вида гидравлических систем:
1. Закрытые (с закрытым контуром)
2. Открытые (с открытом контуром)
Закрытая гидравлическая система — это система циркуляции по закрытому для связи с атмосферой контуру.
Примером закрытой гидравлической системы является циркуляция в контре системы отопления/кондиционирования (рис. 1):
Основная особенность закрытой гидравлической системы — это отсутствие статической составляющей напора.
Открытая гидравлическая система — это система имеющая связь с атмосферой, выполняющая задачу перекачивания жидкости между двумя, имеющими геодезический перепад точками
Основная особенность открытой гидравлической системы — это наличие геодезического перепада высот между исходной и целевой точками перекачивания, т. е. наличие статической составляющей общего напора.
Примером открытой гидравлической системы являются системы водоснабжения, напорной канализации, дренажа.
Каким же образом, влияет тип гидравлической системы на эффективность и надежность насосной системы в целом?
Для того, чтобы это понять, необходимо вспомнить такое понятие как КПД насоса.
На рис. 2. представлена рабочая характеристика насоса с указанием номинальной рабочей точки.
Номинальная рабочая точка, характеризует производительность насоса в точке максимального КПД насоса (графически — проекция из очки максимального КПД на кривую характеристики насоса).
Максимальная эффективность насоса достигается при работе именно в точке максимального КПД (что в целом должно быть очевидно)
Об этом необходимо помнить при анализе эффективности системы и при подборе насосного оборудования для вновь проектируемой системы.
(На представленной диаграмме мы видим номинальную точку: расход: 323 м2/ч, напор — 46,35 м, КПД насоса — 82,6% )
При проектировании новой системы определяется расчетная рабочая точка. Она не всегда ложиться непосредственно на кривую характеристики насоса, но она должна быть обеспечена при работе насоса (быть ниже кривой характеристики).
Фактическая же рабочая точка, будет на пересечении кривой характеристики насоса и кривой гидравлического сопротивления системы, проходящей через расчетную рабочую точку. А вот вид кривой характеристики системы, как раз и зависит от типа применяемой гидравлической системы (закрытой или открытой).
Гидравлическая характеристика системы — это кривая гидравлического сопротивления трубопроводов (динамическая составляющая напора), скорректированная с учетом напора, необходимого для преодоления геодезического перепада высот в систем (статическая составляющая напора).
Гидравлическое сопротивление растет с ростом расхода по квадратичной зависимости.
Какие же будут различия закрытой и открытой гидравлических систем?
Как мы уже говорили, основное отличие закрытой и открытой системы заключается в статической составляющей напора. В закрытой системе её нет… Т.е. высота между различными точками трубопроводов в закрытой системе значения не имеет.
Проиллюстрируем на конкретном примере:
Допустим расчетная рабочая точка насоса — расход: 280 м2/ч, напор — 35 м.
Вот как будет выглядеть кривая характеристики насоса, кривая характеристики системы и результирующая фактическая рабочая точка в закрытой системе(рис. 3):
На рис. 3., мы видим:
-нашу расчетную точку (расход: 280 м2/ч, напор — 35 м).
—характеристику насоса (синяя линия)
—характеристика системы (Красная линия) — это кривая гидравлического сопротивления трубопроводов
—кривая КПД насоса (черная линия)
Как мы помним, максимальная эффективность насоса достигается в номинальной рабочей точке, соответствующей точке максимального КПД (нашем примере: расход: 323 м2/ч, напор — 46,35 м, КПД насоса — 82,6%)
Фактическая же точка в закрытой гидравлической системе в данном примере имеет параметры: расход: 322 м2/ч, напор — 46,45 м, КПД насоса — 82,6%.
Т.е. мы фактически попали в точку максимального КПД (расход и напор отличаются от номинальных незначительно, КПД полностью соответствует). С точки зрения надежности насоса это достаточно хороший подбор. Этот насос в этой конкретной системе будет работать долго и безотказно.
Однако, для достижения максимальной эффективности, при подборе нужно стремится, чтобы фактическая рабочая точка было максимально близко к расчетной
Такой подбор насоса, как в нашем примере оправдан только в том случае, если кривая характеристики ближайшего меньшего типоразмера насоса оказывается ниже расчетной точки. Для целей данной статьи, мы принимаем, что мы имеем именно такой случай.
В открытой системе картина будет отличаться на столько, на сколько велика статическая составляющая напора.
Статическая составляющая напора — это давление, необходимое для преодоления геодезического перепада в системе. Этот перепад, в отличие от гидравлического сопротивления системы, есть независимо от расхода в системе и нам всегда надо преодолевать этот перепад.
Статическая составляющая не зависит от расхода, как динамическая.
Соответственно, для нахождения фактической рабочей точки насоса, нам необходимо скорректировать кривую характеристики системы с учетом статической составляющей.
В этом случае, кривая характеристики системы строиться уже не из ноля координат, а из точки на оси напора, соответствующей его (напора) статической составляющей.
На рис. 4. представлена кривая характеристики открытой системы со статическим напором 5 м (геодезический перепад высот) с той же расчетной рабочей точкой (расход: 280 м2/ч, напор — 35 м).
При той же расчетной точке, фактическая рабочая точка уже сдвигается… расход: 327 м2/ч, напор — 45,98 м. КПД уже падает на 0,1% (82,5%)…
Если геодезический перепад будет значительным — параметры фактической рабочей точки могут измениться критически!
На следующей диаграмме (рис. 5) представлена система с все той же расчетной точкой 280 м2/ч, 35 м, но со статической составляющей напора в 27 м.
Как видно, фактическая точка отличается значительно (расход: 372 м2/ч, напор — 41,2 м. КПД упал уже на 2%) и опасно приблизилась к краю рабочей характеристики насоса.
Если статическую составляющую принять — 29 м, то фактически этот насос в такой системе работать уже не будет…
Как видно из рис. 6, программа подбора характеристику системы уже не строит…. Фактической рабочей точки на кривой характеристики насоса просто нет…
Неработоспособность насоса в системе, это хоть и самая серьезная, но только одна из опасностей невнимательного отношения к типу гидравлической системы и игнорирования статической составляющей напора.
В данном примере насос работать просто не будет, и неправильный подбор будет налицо… Есть с кого спросить. ..
Есть и другие случаи, которые не столько очевидны, но имеют не менее серьезные последствия… И неочевидность их лишь усугубляет решение проблем, которые, порой, длятся годами…
Еще два момента необходимо учитывать:
1. Если фактическая рабочая точка насоса далеко от номинальной, а, соответственно, от точке максимального КПД насос, то имеет место очевидное снижение эффективности насосной системы. В нашем примере снижение КПД не велико, однако не все электродвигатели имеют такую пологую кривую КПД, и отклонения от точки максимального КПД насоса может повлечь значительное снижение КПД насоса (на 10 и даже 20%).
2. Отклонение от номинальной рабочей точки влечет также снижение надежности насоса. Выход рабочей точки за пределы рабочего диапазона насоса резко снижает надежность его работы. Подробнее об этом читайте в статье «КПД насоса и его надежность».
Грамотный подбор насосов и анализ системы требует квалификации, времени, но уделять внимание этому вопросу необходимо, так как любая из описанных ситуаций в конечном итоге ведет к потере денег, ресурсов, а, зачастую, и репутации.
Поэтому всегда лучше обратиться за помощью к узким специалистам для решения подобных специфических задач.
Желаем Вам Успехов в вашей работе!
Все статьи Статический напорв системах с изменяющейся температурой жидкости
Если система содержит жидкости с разными температурами, плотность жидкости будет изменяться. Итак, какая плотность жидкости должна использоваться в уравнении: плотность более горячей жидкости, более холодной жидкости или средняя плотность? Какая разница? Влияет ли это на перепад давления или на составляющую статического напора?
На первый взгляд, исходя из уравнений, кажется, что плотность жидкости влияет на составляющую перепада давления.Но разницу давления между двумя резервуарами необходимо преодолевать независимо от плотности жидкости между двумя резервуарами. А поскольку статический напор является частью общего напора в насосе, плотность жидкости в насосе используется в компоненте напора при расчете статического напора.
Фактически, это компонент перепада высоты напора, на который влияет плотность жидкости. Столб жидкости заданной высоты будет соответствовать давлению в нижней части колонны, которое будет отличаться от давления в том же столбе жидкости с другой плотностью.Это компонент перепада высоты напора, который необходимо отрегулировать, чтобы гарантировать, что значения высоты напора связаны с жидкостью в насосе.
Рассмотрим следующие открытые системы, в которых вода перекачивается из резервуара подачи (высота дна = 0 футов, уровень жидкости = 10 футов и давление на поверхности = 0 фунтов на кв. Дюйм) в приподнятый резервуар продукта (высота дна = 150 футов, уровень жидкости = 10 футов, а давление на поверхности = 10 фунтов на квадратный дюйм).
Первая система перекачивает воду при температуре 60 ° F, а вторая система имеет теплообменник на высоте 25 футов, который нагревает воду до 200 ° F.3} \ bigg) \ bigg] = 173,1 фута} Это значение статического напора можно подтвердить с помощью PIPE-FLO, выбрав «График кривой сопротивления» в контекстном меню насоса и посмотрев на значение напора там, где синяя линия пересекает ось Y.
Пересечение оси Y на этом снимке экрана составляет 173 фута. Оно обведено красным и показано в нижней части графика путем наложения курсора на линию.
Во второй системе вода от поверхности жидкости в резервуаре подачи до входа в теплообменник (на высоте 25 футов) имеет плотность 62.3} \ bigg) \ bigg] = 168,2 фута} Это значение статического напора также может быть подтверждено с помощью PIPE-FLO:
Пересечение Y на этом снимке экрана составляет 168 футов. Оно обведено красным и показано в нижней части графика при наведении курсора на линию.
Разница в рассчитанном статическом напоре между двумя системами может быть или не быть достаточно значительной, чтобы оправдать расчет поправки на плотность в системе, в зависимости от степени точности, необходимой в расчетах, и величины разницы между плотностями жидкости. .
Статическое давление: что это такое? Какая разница?
Когда вы идете к врачу, медсестра всегда выполняет несколько измерений. Один из них — артериальное давление — это ключевой показатель здоровья сердечно-сосудистой системы.
Если у вас артериальное давление 120/80 или меньше, вы в хорошей форме. Но начните пробираться на территорию 140/90, и у вас возникнут проблемы.
Статическое давление в воздуховодах работает точно так же. Подобно тому, как высокое кровяное давление указывает на проблему с вашим здоровьем, высокое статическое давление указывает на проблему с вашим оборудованием HVAC и воздуховодами.Что-то создает чрезмерную нагрузку на вашу систему, и она будет работать намного лучше, если вы определите проблему и устраните ее.
Ваше отопительное и воздушное оборудование прослужит дольше. Вам тоже будет намного удобнее.
Статическое давление — это буквально сопротивление.
СистемыHVAC, независимо от размера, предназначены для перемещения определенного количества воздуха. Точно так же воздуховоды должны быть спроектированы таким образом, чтобы вся система могла работать должным образом и эффективно. Когда все спроектировано и установлено правильно, статическое давление там, где оно должно быть.Вы даже можете назвать систему «здоровой».
К сожалению, в реальном мире все работает иначе.
Неправильная установка воздуховодов, плохая конструкция системы и выбор фильтров — все это способствует высокому статическому давлению. Во многих домах играет роль комбинация этих факторов. Пока вы не решите проблему (ы) статического давления, ваша система никогда не будет работать в полную силу и может выйти из строя раньше, чем вы ожидаете.
Тем временем вы можете получить:
- Шумные системы: Ограничения воздушного потока делают работу шумной.Чем больше статическое давление, тем громче ваша система. Вы слышите потрясающий свист воздуха каждый раз, когда включается ваша система? Вероятно, это из-за высокого статического давления.
- Неправильный воздушный поток: Вы когда-нибудь замечали горячие точки, холодные точки или воздух, который просто парит над регистром? Часто причиной является высокое статическое давление. При высоком статическом давлении система может перемещать слишком много (или недостаточно) воздуха на тонну, что приведет к возникновению дискомфортных условий в вашем доме.
- Неисправность оборудования: Если вы никогда не заменяли вентиляторный двигатель или компрессор, считайте себя одним из счастливчиков.Это дорогостоящий ремонт, и вы можете какое-то время оставаться без отопления, переменного тока или тепла. Статическое давление, как мы вскоре рассмотрим, может привести к такому отказу.
- Отказ системы: В серьезных случаях статическое давление может резко сократить срок службы вашего оборудования. Если многие компоненты начинают выходить из строя, вы можете столкнуться с ситуацией, когда замена всего обходится дешевле, чем ремонт отдельных частей.
Испытываете ли вы какие-либо из этих проблем с системой HVAC в вашем доме в Атланте? Возможно, пришло время осмотреть воздуховоды и испытать статическое давление, и фотоэлектрические системы могут помочь!Свяжитесь с нами сегодня
Чтобы лучше понять проблему, представьте, что у вас есть компактный автомобиль. Скажем, Honda Civic. Civic хорошо ведет себя на ровной гладкой дороге. Ничто его не сдерживает.
Теперь немного увеличьте градиент. Есть некоторая нагрузка на двигатель автомобиля, но он все еще работает нормально. Еще немного увеличьте уклон, и машина может начать сопротивляться. Теперь прицепите к задней части прицеп — прицеп с лошадью в нем. И продолжайте увеличивать градиент…
Вы уловили идею. В конце концов, маленькая машинка не сможет справиться с сопротивлением. Что-то сломается.Вы можете даже уничтожить машину.
Статическое давление очень много. Чем больше он увеличивается, тем больше перетаскивания добавляет в вашу систему. Правильное сопротивление гарантирует, что воздух движется так, как должен. Добавьте слишком большое сопротивление, и у вас будут проблемы.
Что вызывает высокое статическое давление и что с этим делать?
Рад, что вы спросили! Вот некоторые из наиболее распространенных причин, по которым ваша система может иметь высокое статическое давление:
- Ваш 1-дюймовый гофрированный фильтр: Они есть у всех, но стандартные 1-дюймовые гофрированные фильтры могут значительно ограничить воздушный поток. Они пытаются фильтровать много воздуха на небольшой площади, и чем толще (или выше значение MERV) фильтр, тем сильнее ограничение. Вот почему мы рекомендуем использовать медиа-фильтр с низким перепадом давления. Вы получаете необходимую фильтрацию без значительного увеличения статического давления. Если вас действительно беспокоит аллергия, вы даже можете добавить ультрафиолетовое излучение в каналы подачи или перейти на фильтр HEPA. Все эти варианты предпочтительнее 1-дюймовых фильтров.
- Плохая конструкция и / или установка воздуховодов: Ограничения воздуховодов могут способствовать высокому статическому давлению.Виной всему могут быть провисающие гибкие воздуховоды, чрезмерные изгибы и провалы, а также другие неудачи при установке. Решение — переустановить или заменить воздуховод. Когда это невозможно, переход на двигатель вентилятора с регулируемой скоростью (вместо системы «вкл / выкл») даст вам лучший воздушный поток, несмотря на проблемы с воздуховодом.
- Негабаритный возвратный воздух: Этот тип подходит для неправильного воздуховода, но недостаточный возвратный воздух представляет собой уникальные проблемы. Ваш компрессор предназначен для перекачивания хладагента под высоким давлением, но слишком мало возвратного воздуха может привести к тому, что система отправит жидкость обратно в компрессор, когда это не должно быть.В долгосрочной перспективе это сокращает срок службы вашего компрессора. Это также может привести к выходу из строя электродвигателя вентилятора — дорогостоящее решение. Решение состоит в том, чтобы добавить обратный канал или увеличить размер существующего обратного канала.
Другая возможность состоит в том, что ваш фильтр действительно загрязнен. Если с момента последней замены прошло более 90 дней, отключите его, чтобы снизить статическое давление.
Несколько слов о низком статическом давлении
Мы только что много говорили о высоком статическом давлении, но низкое статическое давление также может быть проблемой. Хотя очень редко , низкое статическое давление обычно указывает на одно из двух:
- Ваш установщик увеличил размер магистральных линий. Мы видели это в некоторых старых домах. По какой-то причине (в грузовике не было нужного оборудования?), Кто бы ни устанавливал магистральные линии, их размеры были завышены.
- Вы значительно повысили энергоэффективность. Может быть, вы сжали свой домашний конверт в попытке сэкономить энергию. В крайних случаях ваш обновленный дом может быть несовместим со старыми воздуховодами.Раньше они были подходящего размера, но сейчас они не подходят.
В любом случае, вам, вероятно, трудно оставаться комфортно. Воздушный поток недостаточно силен. Вам будет жарко с одной стороны комнаты и холодно с другой.
Обычно решение заключается в перепроектировании и переустановке воздуховодов.
Контроль статического давления
Статическое давление — это не то, что можно легко проверить без специального оборудования, желания просверлить воздуховоды и некоторого опыта.Это одна из причин, по которой люди нанимают такие компании, как мы!
Статическое давление — это одна из вещей, которые мы отслеживаем в рамках наших соглашений об обслуживании. Мы возьмем новые показания и сравним их со старыми, как медсестра измеряет ваше кровяное давление. Это действительно полезное измерение, потому что оно помогает нам устранять проблемы:
- Высокое статическое давление? Мы можем проверить, используете ли вы ограничительный фильтр или ваш возвратный воздуховод недостаточен.
- Низкое статическое давление? Может быть, у вас слишком большие воздуховоды.Мы можем это проверить. Низкое статическое давление — редкость, но не редкость.
И так далее. Чем раньше вы проверите свое статическое давление, тем быстрее вы сможете решить проблемы, прежде чем они приведут к отказу оборудования.
В HVAC простейшие изменения могут иметь большое значение. Простое решение, такое как изменение типа фильтра, который вы используете для снижения статического давления, может сэкономить вам тысячи на , заменяющую систему, которую вам не нужно покупать .
Звучит безумно? Так происходит все время.Статическое давление — вещь серьезная.
Напор и потеря напора
Узнайте больше о разнице между высотным напором, напором, напором трения (потерей напора) и общим статическим напором трубопроводной системы в этой статье.
Статический напор насоса
Насосы используются для перекачки газов или жидкостей. Эти жидкости обычно перекачиваются с более низкого уровня на более высокий. Насос расположен между этими уровнями. Насос создает отрицательное давление на так называемой стороне всасывания , так что жидкость всасывается.Затем насос нагнетает жидкость под высоким давлением. На выходе жидкость теперь проталкивается по трубе на более высокий уровень. Далее мы будем рассматривать только несжимаемые жидкости, например жидкости.
Перепад высоты, который может преодолеть жидкость, зависит от мощности насоса, плотности перекачиваемой жидкости и объемного расхода. Чтобы показать это, рассмотрим вертикальный трубопровод. По этой трубе из резервуара перекачивается жидкость плотностью.. Вода сливается через открытый конец трубы.Преодолеваемая разница в высоте обозначена буквой H. Потери на трение в дальнейшем не учитываются.
Рисунок: Статический напор насосаПериод времени до того, как объем жидкости будет доставлен из нижнего резервуара (уровень жидкости) в верхнюю часть трубы, обозначается t. В течение этого времени t, очевидно, однажды вся жидкость с массой m = V⋅ϱ в трубе должна быть поднята на высоту H (объем жидкости внутри трубы обозначается V). Количество энергии W H , необходимое для этого, определяется по следующей формуле:
\ begin {align}
& W_ \ text {H} = m \ cdot g \ cdot H ~~~ \ text {где} ~~~ m = V \ cdot \ rho \\ [5px]
& W_ \ text {H } = V \ cdot \ rho \ cdot g \ cdot H ~~~~~ \ text {энергия насоса} \\ [5px]
\ end {align}
Эта энергия, очевидно, преобразуется за время t, в результате чего мощность P H , которую выдает насос, составляет:
\ begin {align}
& P_ \ text {H} = \ frac {W_ \ text {H}} {t} \\ [5px]
& P_ \ text {H} = \ frac {V \ cdot \ rho \ cdot g \ cdot H} {t} \\ [5px]
& P_ \ text {H} = \ underbrace {\ frac {V} {t}} _ {\ dot V} \ cdot \ rho \ cdot g \ cdot H \ \ [5px]
& \ boxed {P_ \ text {H} = \ dot V \ cdot \ rho \ cdot g \ cdot H} ~~~~~ \ text {мощность насоса} \\ [5px]
\ конец
При выводе этой формулы было использовано, что отношение объема жидкости V и времени t соответствует поставленному объемному расходу V *.
И наоборот, это означает: Для данной мощности насоса P H и подаваемого объемного расхода V * жидкость может преодолевать только определенную высоту H, в зависимости от плотности жидкости ϱ (на большей высоте , гидростатическое давление столба жидкости будет больше, чем давление, создаваемое насосом, и жидкость не может быть перекачана выше):
\ begin {align}
& P_ \ text {H} = \ frac {W_ \ text {H}} {t} \\ [5px]
& P_ \ text {H} = \ frac {V \ cdot \ rho \ cdot g \ cdot H} {t} \\ [5px]
& P_ \ text {H} = \ underbrace {\ frac {V} {t}} _ {\ dot V} \ cdot \ rho \ cdot g \ cdot H \ \ [5px]
\ label {p}
& \ boxed {H = \ frac {P_ \ text {H}} {\ dot V \ cdot \ rho \ cdot g}} ~~~~~ \ text {статическая голова насоса} \\ [5px]
\ end {align}
Эта максимальная высота, которую может доставить насос, также называется статическим напором , статическим напором или напором насоса.
Статический напор насоса — это максимальная высота, которую насос может обеспечить без потерь благодаря механической мощности, передаваемой жидкости при заданном объемном расходе и плотности!
Обратите внимание, что статический напор насоса не учитывает потери на трение внутри трубы или потери давления из-за клапанов, изгибов, фитингов и т. Д. Это связано с тем, что эти потери нельзя напрямую отнести к насосу, а зависят от система трубопроводов, для которой будет использоваться насос.Поэтому производители насосов в любом случае не могут учитывать такие потери, поскольку им неизвестны условия эксплуатации насоса. По этой причине такие потери давления учитываются так называемой потерей напора в трубопроводной системе (подробнее об этом позже).
КПД насоса
Мощность P H в приведенных выше уравнениях относится только к мощности, которую насос эффективно передает жидкости, то есть к мощности, которая фактически требуется для непрерывного подъема жидкости на высоту H! Эта выходная мощность не идентична входной мощности P в насоса (потребляемая мощность), т.е.е. мощность, которую, например, электронасос должен потреблять от сети.
Следовательно, необходимо учитывать потери преобразования, которые возникают при преобразовании подаваемой электроэнергии в механическую энергию для транспортировки текучей среды. Также необходимо учитывать потери потока в насосе из-за турбулентности, особенно при высоких объемных расходах. Все это суммируется в насосе КПД η:
\ begin {align}
& \ boxed {P_ \ text {H} = P_ \ text {in} \ cdot \ eta} \\ [5px]
\ end {align}
КПД насоса не является постоянной величиной, а зависит от объемного расхода! КПД сначала увеличивается с увеличением скорости потока, а затем снова уменьшается от максимальной точки из-за турбулентности и связанных с этим потерь потока.Типичный максимальный КПД насосов составляет от 70% до 90%.
На рисунке ниже для заданной скорости вращения центробежного насоса показаны типичные кривые напора, эффективности насоса и потребляемой мощности насоса в зависимости от объемного расхода. Обратите внимание, что такие кривые действительны только для определенной скорости вращения насоса.
Статический напор трубопроводной системы
Высота подъема (геодезическая головка)
Физическая разница в высоте между расположенным ниже и выше расположенным резервуаром называется напором или геодезическим напором H e .Соответствующие уровни жидкости служат ориентирами для подъемного напора при условии, что расположенный выше резервуар заполняется снизу. Если он наполняется сверху, ориентиром является точка, в которой жидкость вытекает из трубы. Для нижней чаши не имеет значения, насколько глубоко всасывающая труба погружена в жидкость. Поверхность жидкости всегда нужно брать за основу, так как жидкость во всасывающей трубе поднимается на внешний уровень жидкости все равно сама без помощи насоса.
Рисунок: Геодезическая головка при заполнении резервуара снизу Рисунок: Высота подъема при заполнении резервуара сверхуВысота подъема трубопроводной системы может быть дополнительно разделена на всасывающую головку на стороне всасывания насоса и нагнетательную головку головка на напорной стороне насоса. Обе головки вместе составляют подъемную головку системы трубопроводов.
Высота напора трубопроводной системы — это физическая разница в высоте между нижним и верхним уровнем жидкости! Он получается из суммы всасывающей головки и напорной головки .
Рисунок: Высота подъема (геодезическая высота всасывания и напор)Для перекачивания жидкостей статический напор насоса всегда должен быть больше, чем высота подъема системы. Однако это применимо только в том случае, если в трубе отсутствуют потери на трение или поток из-за установленных компонентов, таких как клапаны, колена, фитинги или измерительные приборы. Кроме того, максимальная высота всасывания ограничена физическими условиями.
Максимальная геодезическая высота всасывания
Со стороны всасывания насос работает как соломинка для питья.Это означает, что насос вообще не всасывает жидкость. Напротив, (окружающее) давление на поверхности жидкости толкает жидкость в насос. Поскольку давление окружающей среды ограничено, даже при создании идеального вакуума невозможно преодолеть любую высоту всасывания. Пренебрегая трением и потерями потока, максимальная высота всасывания определяется по следующей формуле (вывод этой формулы см. В статье Как работает трубочка для питья?).
\ begin {align}
\ label {hmax}
& \ boxed {h_ \ text {s, max} = \ frac {p_0} {\ rho \ cdot g}} ~~~~~ \ text {максимальная высота всасывания } \\ [5px]
\ end {align}
В этой формуле p 0 обозначает (окружающее) давление на поверхности жидкости, а ϱ обозначает плотность жидкости.Таким образом, для перекачивания воды плотностью ϱ = 1000 кг / м³ максимальная высота всасывания при атмосферном давлении 1 бар составляет 10 метров.
Однако из-за того, что ни один насос не может создать идеальный вакуум, а из-за вязкости перекачиваемой жидкости потери на трение неизбежны, максимальная геодезическая высота всасывания воды на практике составляет всего 8 метров. Обратите внимание, что когда резервуар закрыт, давление окружающей среды может быть искусственно увеличено, так что возможны более высокие напоры на всасывании.
В отличие от всасывающего напора, напор на напорной стороне насоса в принципе не ограничен максимальным значением.В зависимости от давления, создаваемого на стороне нагнетания, можно достичь (почти) любого напора.
Напор трения (потеря напора)
Как уже упоминалось, на самом деле необходимо учитывать трение и потери потока в системе трубопроводов. Таким образом, на практике насос должен передавать жидкости большую мощность, чем в случае отсутствия трения. Принимая во внимание трение, реальная система ведет себя так, как если бы фиктивная система без трения имела более высокий напор. Этот дополнительный (фиктивный) напор, который включает в себя потери на трение и поток, называется головкой трения или потери напора H f .
Рисунок: Полный статический напор трубопроводной системы как сумма подъемного напора и напора трения (потери напора)Если P f обозначает потерю мощности, которая возникает при определенном объемном расходе V *, то напор трения H f можно определить по уравнению (\ ref {p}):
\ begin {align}
& \ boxed {H_ \ text {f} = \ frac {P_ \ text {f}} {\ dot V \ cdot \ rho \ cdot g}} ~~~~~ \ text {трение head (потеря напора)} \\ [5px]
\ end {align}
(фиктивный) общий статический напор системы трубопроводов H — , следовательно, больше, чем высота подъема H e , на величину фрикционного напора H f :
\ begin {align}
& \ boxed {H_ \ text {tot} = H_ \ text {e} + H_ \ text {f}} ~~~~~ \ text {общий статический напор системы трубопроводов} \\ [5px]
\ end {align}
Таким образом, при выборе подходящего насоса необходимо сравнить статический напор насоса с (фиктивным) статическим напором трубопроводной системы.Статический напор насоса должен быть больше, чем общий статический напор системы, чтобы жидкость могла перекачиваться. Однако при этом еще не учитывается тот факт, что на поверхности жидкости в верхнем и нижнем резервуарах может существовать разное давление. По этой причине, как правило, также следует учитывать напор , который будет обсуждаться более подробно в следующем разделе.
Даже в горизонтальной трубе неизбежно возникает трение из-за вязкости жидкости.В этом случае связанная с этим потеря напора действительно может быть показана очень четко. Можно представить себе небольшие вертикальные трубки, прикрепленные к трубе. Из-за статического давления в текущей жидкости жидкость в вертикальных трубках на определенную величину прижимается вверх. Однако из-за потерь на трение в трубе статическое давление на выходе уменьшается (при условии постоянного поперечного сечения трубы). Жидкость в трубе ниже по потоку достигает только меньшей высоты. Разница в уровнях жидкости соответствует потерям напора в горизонтальной трубе.
Рис.: Потери напора (потери на трение) вдоль вертикального трубопроводаНапор
Представьте себе следующую ситуацию. Воду перекачивать из закрытого резервуара в открытый резервуар на высоте 6 метров. В закрытом резервуаре создается избыточное давление (избыточное давление), создаваемое компрессором. Даже без насоса это положительное давление толкает воду вверх. При избыточном давлении 0,1 бар вода теоретически поднимается на высоту 1 метр над уровнем жидкости [см. Формулу (\ ref {hmax})].Таким образом, насос должен преодолеть только последние 5 метров высоты. С точки зрения энергии, система имеет общий статический напор всего 5 метров с точки зрения насоса (без учета потерь напора).
Рисунок: Напор системы трубопроводовИ наоборот, общий статический напор системы увеличивается, когда нижний резервуар открыт, а в верхнем резервуаре создается положительное давление. В этом случае более высокое давление в верхнем резервуаре толкает воду в трубе вниз.Это означает, что теперь насос должен преодолевать гораздо большую разницу в высоте. Эффекты уравновешивают друг друга только в том случае, если давления в обоих резервуарах одинаковы (например, давление окружающей среды в обоих резервуарах). Даже без внешних компрессоров в закрытых резервуарах возникают перепады давления, поскольку объем воздуха в резервуаре также изменяется при изменении уровня жидкости, при этом воздух не может выйти или втекать внутрь.
Рисунок: Напор в системе трубопроводов с положительным давлением в верхнем резервуареУвеличенный или уменьшенный напор из-за разницы давлений Δp между двумя резервуарами называется напор H p .Перепад давления определяется разницей между давлением в верхнем резервуаре p 2 и давлением в нижнем резервуаре p 1 Таким образом, знак также воспроизводится правильно, так что в случае отрицательного давления в верхнем резервуаре (или при положительном давлении в нижнем резервуаре) возникает отрицательный напор, который снижает общий статический напор системы.
\ begin {align}
& H_ \ text {p} = \ frac {\ Delta p} {\ rho \ cdot g} \\ [5px]
& \ boxed {H_ \ text {p} = \ frac {p_ \ текст {2} -p_ \ text {1}} {\ rho \ cdot g}} ~~~~~ \ text {напор} \\ [5px]
\ end {align}
Таким образом, общий напор системы H — обычно определяется из суммы напора H e , напора трения H f и напора H p. :
\ begin {align}
& \ boxed {H_ \ text {tot} = H_ \ text {e} + H_ \ text {V} + H_ \ text {p}} ~~~~~ \ text {общий статический заголовок системы трубопроводов} \\ [5px]
\ end {align}
Голова как энергия на единицу веса
На этом этапе голова в соответствии с уравнением (\ ref {p}) должна быть исследована более внимательно и интерпретироваться несколько иначе.Для этой цели будет использовано, что мощность определяется как энергия в единицу времени, а объемный расход определяется как объем жидкости в единицу времени.
\ begin {align}
\ require {cancel}
& H = \ frac {P_ \ text {H}} {\ dot V \ cdot \ rho \ cdot g} ~~~~~ \ text {where} ~~~ P_ \ text {H} = \ frac {W_ \ text {H}} {t} ~~~~~ \ text {и} ~~~ \ dot V = \ frac {V} {t} ~~~ \ text {:} \\ [5px]
& H = \ frac {\ frac {W_ \ text {H}} {\ bcancel {t}}} {\ frac {V} {\ bcancel {t}} \ cdot \ rho \ cdot g} \\ [5px]
& H = \ frac {W_ \ text {H}} {\ underbrace {V \ cdot \ rho} _ {m} \ cdot g} \\ [5px]
& H = \ frac { W_ \ text {H}} {m \ cdot g} \\ [5px]
& \ boxed {H = \ frac {W_ \ text {H}} {F_ \ text {g}}} \\ [5px]
\ end {align}
Эта формула показывает, что напор можно интерпретировать как энергию на единицу веса.Следовательно, применяются следующие утверждения:
- статический напор насоса = энергия насоса, передаваемая жидкостному элементу (в зависимости от веса жидкостного элемента).
- статический напор трубопровода = Энергия, необходимая для доставки жидкого элемента (относительно веса жидкого элемента).
Характеристическая кривая системы
В то время как вертикальный напор и напор являются постоянными величинами для трубопроводной системы, напор на трение или потеря напора зависят от объемного расхода.5}} ~~~ \ text {потеря давления в прямом участке трубы} \\ [5px]
\ end {align}
Эта потеря давления неизбежно связана с потерей механической энергии и соответствующей потерей напора. Таким образом, потеря напора увеличивается (приблизительно) квадратично с увеличением объемного расхода. «Примерно», потому что на коэффициент трения, в свою очередь, влияет объемный расход. На приведенном ниже рисунке качественно показана характеристическая кривая общего статического напора трубопроводной системы в зависимости от объемного расхода.
Рисунок: Характеристическая кривая общего напора системыХотя общий напор системы увеличивается с увеличением объемного расхода, статический напор насоса уменьшается из-за увеличения потерь потока внутри насоса. Во время работы насоса, в зависимости от объемного расхода, устанавливается общая рабочая точка ( рабочая точка ), которая соответствует точке пересечения между характеристической кривой насоса и характеристической кривой системы.
Рисунок: Смещение рабочих точек при изменении апертуры дроссельной заслонкиНа характеристическую кривую системы можно влиять с помощью дроссельной заслонки для управления расходом. Однако следует отметить, что центробежный насос имеет максимальный КПД при определенном объемном расходе. Для энергоэффективной работы рабочая точка должна быть как можно ближе к этой точке максимальной эффективности. Однако изменение характеристической кривой системы, вызванное дроссельной заслонкой, обычно отрицательно влияет на рабочую точку — более низкий КПД возникает из-за больших потерь потока из-за дросселирования.Поэтому изменение скорости вращения насоса для управления объемным расходом может быть более разумным на данном этапе.
Рис.: Смещение рабочих точек при изменении скорости насосаОтветы на логическую головоломку № 1 «Спросите инженера» — Статический напор в трубопроводных системах
Ниже приведены ответы на головоломку №1 от Engineered Software Inc. — Статический напор в трубопроводных системах.
1. B-90 футов
2. B-90 футов
3. B-90 футов
4.C-95ft
5. A-87ft
Пояснения:
Статический напор = разница в высоте + разница в давлении
Высота напора = (Высота поверхности жидкости резервуара продукта) — (Высота поверхности жидкости резервуара подачи)
Система № 1:
Статический напор = (100 футов + 10 футов) — (0 футов + 20 футов) = 90 футов
Система № 2:
Даже несмотря на то, что труба входит в середину резервуара на высоте 105 футов, есть еще 5 футов жидкости выше места проникновения трубы.Напор насоса «ощущает» столб воды высотой 110 футов, а всасывающий — 20 футов воды из резервуара подачи. Статический напор = (105 + 5) — (0 + 20) = 90 футов
Система № 3:
Даже несмотря на то, что труба поднимается на высоту 120 футов, она опускается вниз и выпускается на высоте 105 футов, и есть еще 5 футов жидкости над выходом трубы. Энергия, необходимая для подъема жидкости со 105 футов до 120 футов, восстанавливается сифонным эффектом, когда жидкость опускается со 120 футов до 105 футов к выпускному отверстию.Чистый эффект состоит в том, что у насоса все еще есть 110 футов напора, на которые он должен давить на выходе, и 20 футов напора на всасывании, чтобы помочь ему. Статический напор = (105 + 5) — (0 + 20) = 90 футов
Система № 4:
Выход из трубы находится на высоте 115 футов, даже если он поднимается до 120 футов, а затем снова падает (5 футов энергии восстанавливается из-за сифонного эффекта). Статический напор = (115) — (20) = 95 футов
(ПРИМЕЧАНИЕ: при запуске насос должен преодолеть 100 футов статического напора, чтобы достичь вершины контура)
Система № 5:
Поскольку статический напор относится к жидкости, проходящей через насос, Система 5 требует компенсации плотности 85 футов жидкости от теплообменника до резервуара для продукта.3.
85 футов x (60,1 / 62,4) = 81,9 футов
Общий статический напор = (статический напор от насоса к HX + напор от HX к резервуару с продуктом — напор от питающего резервуара к насосу)
Полный статический напор = (25 футов + 81,9 футов) � 20 футов = 86,9 футов
Чистый эффект компенсации температуры (плотности) заключается в снижении статического напора на 3 фута до 87 футов.
___________________________________________
Если у вас есть предложение или головоломка, которую вы хотели бы предложить, отправьте ее и отправьте по электронной почте на адрес brainteaser @ eng-software.com.
Мы приветствуем ваши предложения и отзывы по любой из статей «Спросите инженера».
___________________________________________
— 2011 Engineered Software, Inc. 4529 Intelco Loop SE, Лейси, Вашингтон 98503
www.eng-software.com
Как избежать проблем с насосами вашей гидравлической системы
В некоторых гидравлических системах постоянно возникают проблемы. Владелец такой проблемной системы оплачивает услуги по ремонту или замене различных компонентов, которые постоянно выходят из строя.Техническое обслуживание, такое как ненагреваемые цепи, шум, воздушное засорение, чрезмерный отказ компонентов, особенно насосов и т. Д., Необходимо проанализировать, чтобы выявить причины постоянных тронов, найти неисправный компонент, заменить его и сообщить владельцу, что система была неисправна. «фиксированный.» Любая система, имеющая непрерывную проблему, разрешима. Правильно спроектированные, установленные и запущенные гидравлические системы будут безотказными в течение многих лет.
Инженеры-гидроники, у которых есть планы и спецификации, обычно проектируют большие гидравлические системы.Пока подрядчик по установке следует плану и спецификациям, никаких системных проблем возникнуть не должно. Системы меньшего размера, жилые и коммерческие, обычно «проектируются» подрядчиком по установке. В этих системах могут наблюдаться постоянные проблемы, и вместо простой замены деталей требуется анализ для выявления реальных проблем.
Делается много ошибок при размещении циркуляционных насосов относительно расширительного бака. Когда насосы впервые использовались, они всегда находились на обратном трубопроводе, подающем в котел.Это было место, где вода была наиболее прохладной, так как она циркулировала по системе и отдавала тепло. Производственные допуски не могли быть такими строгими, как сегодня, поэтому там, где вода была самой холодной, было нормой для размещения циркуляционных насосов. Как мы увидим, этот «стандарт» устарел и не обязательно является лучшим местом для подкачивающего насоса. Производственные процессы были усовершенствованы, так что насос можно размещать в воде слива котла без вредного воздействия на насос. Расположение насоса определяется местом подключения расширительного бачка к системе.
Когда насос выключен, существует только статическое давление (см. Info-Tec 26, Системы водяного отопления). Запуск насоса изменит давление в системе до нового набора условий. Головка насоса появится поперек насоса. Давление на выходе насоса будет выше давления на входе насоса на величину, равную напору насоса. Падение давления (DP) будет постепенно уменьшаться от нагнетания до всасывания насоса.
Указав точку отсутствия изменения давления, можно регулировать давление в системе при включенном насосе. Точка отсутствия изменения давления — это место, где расширительный бак подключается к системе. Это связано с тем, что воздух в баке сжатия должен подчиняться законам газа: изменение давления воздуха должно сопровождаться изменением объема воздуха. Изменение объема воздуха приводит к изменению объема воды в резервуаре. Изменение объема воды в баке должно вызывать изменение объема воды в системе. Работа насоса не может увеличивать или уменьшать объем воды в системе, так как вода несжимаема. Следовательно, работа насоса не может изменить давление в баллоне.Поскольку давление в резервуаре не может измениться из-за работы насоса, соединение резервуара с системой должно быть точкой, в которой давление не изменяется.
Исходя из этого факта, если компрессионный бак расположен на стороне всасывания насоса, давление всасывания насоса не изменится, независимо от того, включен насос или выключен. Поскольку всасывание насоса не может измениться, напор насоса должен изменяться при включении насоса. Вся напор насоса должен быть положительным на выходе насоса. Повышение давления будет уменьшаться в системе до исходного статического давления на всасывании насоса.(Это называется гидравлическим градиентом.) Это графически представлено на рисунке 1. Обратите внимание на линию, представляющую напор насоса или гидравлический градиент. На большей части системы он находится над линией давления исходного состояния.
Рисунок 1.
Поскольку давление всасывания не отличается от статического из-за работы насоса, это лучшее место для котла (см. Рисунок 2).
Рисунок 2.
Если компрессионный бак расположен на стороне нагнетания насоса, когда насос перекачивает в бак и бойлер, все изменения давления в системе из-за работы насоса будут вычтены из исходного статического давления.Поскольку давление нагнетания насоса не может измениться, давление всасывания должно измениться. (См. Рис. 3.) Давление всасывания будет падать, равным полному напору насоса. Это может привести к кипению или кавитации. Снижения давления в верхних точках системы может быть достаточно, чтобы вызвать вакуум, всасывающий воздух в систему через вентиляционные отверстия. Это может привести к воздушным цепям. Это может привести к нестабильному, несбалансированному потоку воды. Шумные кавитирующие насосы скоро выйдут из строя. Котел может «стучать» каждый раз при запуске насоса.
Рисунок 3.
Для систем, которые демонстрируют эти проблемы, и где насос нагнетает воду в котел и компрессионный бак, возможны три решения:
1. Увеличьте статическое давление до уровня, достаточного для предотвращения всасывания воздуха и закипания. Это может потребовать изменения размера компрессионного бака.
2. Переверните насос. Откачать из котла и бака. Часто невозможно изменить направление потока из-за монофлора, проточных клапанов и т. Д.
3.Переместите насос на другую сторону котла и компрессионного бака. Откачать из котла и бака.
Одна небольшая система с низким напором насоса, например, в которых используется насос серии 100 или SLC Bell & Gossett, может не потребоваться откачка от котла и резервуара, поскольку энергии насоса недостаточно, чтобы сильно повлиять на давление в системе . Безусловно, правильно собрать систему и предотвратить проблемы не повредит. Как правило, системы, в которых требуются насосы с мощностью 1/3 л.с. двигатели или более обязательно должны быть установлены с откачкой от котла и компрессионного бака.
Поскольку циркуляционный насос является основной движущейся частью системы принудительного водяного отопления, важно не только его расположение, но и правильное техническое обслуживание критически важно для хорошей работы системы.
Все бустерные насосы являются центробежными. Они используют центробежную силу для перемещения жидкости. Крыльчатка — ключевая деталь. Жидкость, попадающая в проушину вращающейся крыльчатки, со значительной силой выбрасывается на край. Направление вращения крыльчатки имеет значение. Лопасти рабочего колеса должны «хлопать» по воде, а не «закапываться».«С новыми однофазными насосами это обычно не проблема, но трехфазные двигатели подключаются к сети и могут вращаться в любом направлении. К сожалению, крыльчатка, вращающаяся в неправильном направлении, приведет к циркуляции воды, но производительность (галлонов в минуту) будет очень низкой, а насос будет шумным.
Нагрузка двигателя или потребление тока зависит от скорости откачки галлонов в минуту. Насос найдет точку на своей кривой, в которой DP системы будет равняться способности насоса создавать необходимый напор при данном расходе.На рисунке 4 показана типичная характеристика насоса. Расход в галлонах в минуту отображается в зависимости от DP в футах. Нагрузка двигателя показана для иллюстрации того, что происходит при увеличении галлонов в минуту.
Для бустерных насосовтребуется затопленный всасывающий патрубок; то есть постоянная подача чистой жидкости без пузырьков, поступающей в проушину рабочего колеса для работы. Часто подрядчик увеличивает размер подкачивающего насоса, чтобы «быть уверенным», что он будет перекачивать требуемый галлон в минуту. Негабаритный насос приведет к возникновению шума в системе. Следовательно, если по какой-либо причине необходимо дросселировать подкачивающий насос, дроссельный клапан должен находиться на напорной стороне насоса.Это поддерживает затопление всасывания и предотвращает кавитацию, которая быстро разрушает рабочее колесо.
Каждый раз, когда двигатель насоса потребляет чрезмерную силу тока, а напряжение находится в пределах нормы, следует снимать показания манометра. Если показания указывают на то, что насос слишком большой и перекачивает слишком много воды, сброс может быть ограничен. Чтобы проверить производительность насоса, установленного в системе, необходимо определить перепад давления между всасывающим и выпускным отверстиями насоса.Как только это будет найдено, по кривой производительности насоса станет известно количество галлонов в минуту. Рисунок 4 иллюстрирует взаимосвязь между DP и GPM.
Рисунок 4.
В некоторых насосах предусмотрены отводы для установки манометров. Если отводы не предусмотрены, в корпусе насоса можно просверлить отверстия и нарезать резьбу или установить измерительные отверстия в примыкающем трубопроводе. Убедитесь, что оба манометра обнулены и точны. Вычтите показания всасывания из показаний нагнетания. Ответ — голова.Кривые насоса показывают DP в футах напора. Чтобы преобразовать показания манометра в фунты на квадратный дюйм в футы головы, умножьте фунты на квадратный дюйм на 2,3. В качестве примера: Рисунок 4 представляет собой кривую для насоса, которая показывает перепад 2 фунта на кв. Дюйм при работе. Если умножить 2 фунта на квадратный дюйм на 2,3, получится 4,6 фута напора. Введите график кривой насоса на 4,6 DP и нарисуйте линию, пересекающую кривую насоса. Проведите линию от этого пересечения до линии GPM и прочтите 18 GPM.
Теоретически, насос слишком большого размера может быть дросселирован до очень низкого расхода, даже без расхода, без каких-либо повреждений.На практике это не так. Пока двигатель разгружается при малых расходах, энергия вращающейся крыльчатки должна куда-то «уходить», и это где-то будет нагреваться. Это тепло трения может вызвать кипение в корпусе крыльчатки насоса, что приведет к повреждению крыльчатки и / или уплотнений насоса. Если размер насоса настолько велик, что его расход необходимо дросселировать более чем на 50%, лучше заменить насос на насос подходящего размера, а не просто дросселировать его.
В то время как большинство проблем с насосами в операционной системе возникает из-за насосов увеличенного размера, следует также решать проблемы с насосами меньшего размера.Большинство проблем с насосом меньшего размера возникает из-за того, что в систему вносится добавление, а не пересчитываются новые параметры для системы. Насос меньшего размера, установленный в новой системе, обычно сразу обнаруживается и ремонтируется. Когда добавляются существующие системы, о насосе забывают и возникают проблемы с циркуляцией. Любая система, которая испытывает проблемы с нагревом после добавления дополнительного излучения, подозревается в проблеме с насосом меньшего размера.
Большой перепад температуры в системе свидетельствует о недостаточной циркуляции.Если имеется более одной цепи, короткие замыкания могут хорошо нагреваться, а более длинные — нет. Если перебалансировка системы не может решить проблему недостаточного нагрева, подозревают насос недостаточного размера. По манометрам, как и раньше, можно проверить насос.
Есть несколько практических правил, которые могут помочь определить производительность насоса:
Производительность насоса может быть определена путем деления расчетной БТЕ / час. теплопотери здания по БТЕ / час. производительность каждого циркулирующего галлона в минуту. Используя определение БТЕ, если один фунт воды падает на один градус по Фаренгейту при циркуляции, то выделяется одна БТЕ.Галлон воды весит 8,3 фунта. Следовательно, если галлон воды упадет на один градус, он потеряет 8,3 БТЕ. Если один галлон в минуту циркулирует в течение одного часа, то: 8,3 x 60 = 498 БТЕ / час. Используйте 500 для упрощения вычислений. Расчетное падение температуры воды, обычно 20 o F, умноженное на 500, равно 10 000 БТЕ / час. на галлон в обращении. Если потери тепла в здании составляли 200 000 БТЕ / час, насос должен перекачивать 20 галлонов в минуту. (Фактическое падение рабочей температуры, вероятно, будет намного меньше, чем расчетное падение температуры.Это не повлияет на мощность радиаторов в значительной степени.)
Большинство жалоб на недостаточную циркуляцию в системах, которые не были добавлены, связаны с заеданием воздуха. Никакая система воздухообмена котла не эффективна на 100%. Некоторое количество воздуха всегда увлекается водой и циркулирует вместе с водой. ЕСЛИ система не была запущена должным образом, в системе все еще циркулирует большое количество воздуха. В конце концов, воздух поднимется к верхним точкам системы, где он будет действовать как разрыв в системе.Циркуляционный насос не может толкать воздух по вертикальной трубе.
Для каждой верхней точки системы требуется вентиляционное отверстие для удаления воздуха из системы. Бульканье на обратной стороне радиатора свидетельствует о том, что радиатор частично связан с воздухом. Если в системе по-прежнему возникают проблемы с воздушным связыванием, необходимо найти причину попадания избыточного воздуха в систему. Избыточный воздух не только не вызывает проблем с нагревом или недостаточного нагрева, но и может разрушить компоненты системы.
1. Проверьте герметичность; особенно сальники насоса.
2. Правильно ли выбрана линия, ведущая к резервуару?
3. Не должно быть клапанов на горизонтальной линии к резервуару или уличных элей в отверстиях котла или фитингов резервуара.
4. Погружную трубку арматуры котла нужно вставить в котел до упора.
5. Если в системе используются автоматические вентиляционные отверстия, перейдите на ручные.
6. И, наконец, выполните надлежащий запуск, как описано ранее в Info-Tec 26 (Системы водяного отопления).
На рис. 5 показана типичная установка и отмечены перечисленные выше элементы.
Рисунок 5.
Если система была правильно запущена, установлена и тщательно проверена, но при этом воздушное связывание все еще остается проблемой, необходимо проверить газообразование. Различные материалы, используемые при установке, такие как флюсы для припоя, смазочно-охлаждающие жидкости, соединения для труб и т. Д., При нагревании могут вызвать химическую реакцию и образовать горючий газ. Этот газ вырабатывается постоянно, и никакая система управления воздухом не справится с этим.Систему нужно почистить. Все системы следует очищать после установки и перед запуском, но это происходит редко.
Для очистки можно использовать тринатрийфосфат, каустическую соду или заменитель TSP. Рекомендуется соотношение 1 фунт TSP на 50 галлонов воды в системе. TSP следует растворить в горячей воде, а затем добавить в систему в жидком виде любым удобным способом. Дайте раствору циркулировать не менее нескольких часов. В это время система должна работать при нормальной температуре нагрева.Не циркулируйте этот раствор более 10-12 часов. После циркуляции полностью слейте воду и снова заполните систему неочищенной чистой пресной водой. (Если гликоль система, гликоль теперь можно смешать и заполнить.) Обеспечьте циркуляцию заполненной системы в холодном состоянии в течение 10–15 минут. Теперь проверьте воду в системе с помощью индикаторных листов PH. Система должна показывать pH от 7 до 9. Если низкий (кислотный), добавьте немного очищающего раствора, чтобы поднять pH, но не превышайте 8. Следует избегать высокого pH (щелочного).
Как только система будет очищена и уровень pH станет хорошим, систему следует правильно запустить.
Правильно установленные гидравлические системы по своей сути бесшумны. Любой шум, достаточно громкий, чтобы вызвать жалобу жителей здания, должен быть расследован. Если шум возникает только при работающем насосе, не стоит сразу предполагать, что насос неисправен. Во многих случаях проблема заключается не в помпе, а в установке.
Расширение и сжатие трубопровода будет сопровождаться шумом, если не были приняты надлежащие меры для поглощения расширения системы трубопроводов. Кусок медной трубки диаметром 10 дюймов (3/4 дюйма) расширится на 7/16 дюйма при повышении температуры на 100 o F! Это расширение должно быть допущено, иначе в результате возникнет сильный шум, даже если вы повредите систему трубопроводов и прилегающие элементы конструкции.
Как уже отмечалось, захваченный воздух может вызывать шумы циркуляции, а насос слишком большого размера может вызывать шумы циркуляции.
Любое оборудование с движущимися частями создает некоторый шум и вибрацию. Если шум трубопровода вызван вибрацией насоса, насос следует проверить. На бустерах меньшего размера с двигателями, установленными на кольце, перекос из-за изогнутого кронштейна двигателя, вызванного падением или наступлением на насос, вызовет вибрацию. Пропитанные маслом опоры двигателя будут шалфейными и вызовут перекос.Избыточная смазка бустерных двигателей вызвала больше отказов, чем недостаточная смазка. Несоосность приведет к чрезмерному износу и частому отказу муфт. Муфты и опоры двигателя следует менять одновременно. Встроенные насосы должны располагаться как можно ближе к котлу, чтобы избежать нагрузки от веса насоса на трубопровод.
Насосы, устанавливаемые на основании, должны быть надежно закреплены на тяжелом фундаменте, изолированном от плиты перекрытия. На корпус насоса не должно накладываться никакого веса трубопровода.Гибкие соединители между насосом и трубопроводом — отличный способ предотвратить передачу вибрации. Для хорошей изоляции трубопровод должен быть закреплен на стороне насоса со стороны системы.
Вешалки, создающие нагрузку на трубопровод системы, могут создавать шум. Проверьте все вешалки. Простое ослабление, перемещение или замена подвески решило многие жалобы на шум. Подступенки никогда не должны соприкасаться с конструкцией здания.
Частые отказы уплотнений в насосах с механическим уплотнением обычно связаны с водными условиями.Все уплотнения протекают небольшим количеством воды. Это помогает смазать поверхности уплотнения. Фактически, на больших насосах с набивными уплотнениями гайка сальника регулируется для регулирования заданной скорости утечки. Системные герметики устраняют утечки, затвердевая при контакте с воздухом. Уплотнители вызовут быстрое повреждение поверхностей уплотнения. Если в системе когда-либо использовался герметик, его следует слить, как только утечки будут устранены, а система снова наполнена и запущена снова. Многие добавки, такие как ингибиторы коррозии, при использовании в чрезмерных количествах также могут вызвать повреждение уплотнения.Насос никогда не должен работать всухую. Перекачиваемая жидкость уносит тепло от трения, создаваемое уплотнением, а также помогает смазывать поверхности уплотнения.
Бустерные насосыпредназначены для закрытых систем. Они не могут справиться с большим количеством пресной воды. Они испытают выход из строя уплотнения, точечную коррозию корпуса насоса и разрушение рабочего колеса. Все насосы, используемые для контуров питьевой воды, выполнены из латуни по только что указанной причине, и даже в этом случае они не имеют обычного длительного срока службы насоса закрытой системы.
Определение статического давления
HVAC — Независимо от типа используемой системы, при обогреве или охлаждении здания вы перемещаете какую-то среду по трубопроводу, чтобы либо испускать тепло, либо поглощать тепло.
В гидравлической системе при перемещении теплоносителя вы преодолеваете напор. Это измеряется в фунтах на квадратный дюйм (psi) или футах на голову. При перемещении воздуха (газа)
через систему принудительной подачи воздуха или вентиляции преодолевается статическое давление, а
измеряется в дюймах водяного столба (вод. Ст.).Теоретически между ними очень мало различий, но важно знать различия, сходства и важность обоих. Кто-то, проектирующий гидравлическую систему, будет ненавидеть, если он не предпримет надлежащих шагов для обеспечения того, чтобы давление напора системы было рассчитано и спроектировано таким образом, чтобы гарантировать правильную работу системы.
Спросите кого-нибудь, устанавливающего систему принудительной подачи воздуха, каково общее статическое давление системы воздуховодов, и они, вероятно, не смогут ответить на этот вопрос.Однако, если бы вы поговорили с кем-то, кто занимается проектированием системы вентиляции, они подчеркнули бы огромную важность знания статического давления.
Давление нагрева
Что касается нагрева, то жидкостный и принудительный воздух в некоторой степени схожи в том, что они оба перемещают среду (жидкость или воздух) через ряд каналов (трубопроводов или воздуховодов), доставляя тепло в назначенное место. области. Обе системы должны преодолевать сопротивление через свои соответствующие системы распределения.
В гидравлической системе каждый фут трубы, колена и Т создает сопротивление потоку. Эти фитинги классифицируются по номиналам Cv, также измеряется падение давления из-за трения в трубе. Стандартный медный отвод 1/2 дюйма на 90 ° имеет рейтинг Cv 2,5. Это означает, что когда через фитинг проходит 2,5 галлона жидкости в минуту, создается перепад давления в один фунт / кв. Дюйм.
Труба будет иметь измеримое сопротивление в зависимости от расхода и размера. Например, пластиковая труба 1/2 дюйма, пропускающая один галлон жидкости в минуту, будет иметь перепад давления где-то около 1.1 фут водяного столба на 100 футов.
Разработчик берет эти числа и складывает их, чтобы убедиться, что насос, выбранный для проекта, будет достаточно большим, чтобы преодолеть полное падение давления во всей системе. Если размер насоса меньше размера, он не сможет перемещать жидкость по трубе, и напор будет мертвым.
При перемещении воздуха «трубы» обычно намного больше и сделаны из листового металла. Поскольку воздуховоды обычно намного больше, чем трубы, по которым проходит жидкость, сопротивление потоку намного ниже.Это может быть доля фунта на квадратный дюйм, поэтому это сопротивление измеряется не в фунтах на квадратный дюйм, а в дюймах водяного столба (wg).
Хотя сопротивление ниже, оно все еще существует, и его все еще важно учитывать. Для измерения этих перепадов давления обычно используется манометр. Трубка, помещенная в воздуховод, обращенная в направлении потока, будет измерять общее давление в воздуховоде.
Проведя измерения в различных точках , можно увидеть падение давления во всей системе.Объемный расход в системе можно измерить на входе в систему и на выходе из системы, например, в воздуховоде приточного и возвратного воздуха.
Существуют допустимые диапазоны, в которых системе разрешено работать. Их можно найти в инструкции по установке.
По большей части, в системе с принудительной подачей воздуха он должен почти равняться нулю. Обычно допускается окно шириной 0,5 дюйма. Эта разница — то, что может вызвать отрицательное или положительное давление в доме, который отапливается с помощью принудительной воздушной системы или вентилируется с помощью HRV или ERV.
Вентиляция
Для вентиляции нам нужно пройти немного дальше в кроличью нору в отношении давления. Выбор вентилятора обычно основан на скорости воздушного потока, измеряемой в кубических футах в минуту, и статическом давлении.
К счастью, разработчики программного обеспечения и инженеры обычно делают большую часть математических расчетов за нас при работе в крупной коммерческой или промышленной среде, но когда вы думаете о жилом или небольшом приложении, статическое давление отходит на второй план по сравнению с CFM.
Если вы знаете, насколько велика комната и сколько кубометров в минуту может переместить вентилятор, обычно можно без труда выбрать вентилятор нужного размера для приложения.
Если мы возьмем стандартную кухню 10 на 10 футов с восьмифутовыми потолками, мы узнаем, что общий кубический метр составляет 800. Если нам нужно сделать 15 воздухообменов в час, простая математика поможет нам вычислить размер. вентилятора требуется.
В этом случае общее количество воздуха, перемещаемого за час, составляет 800 x 15, или 12 000 куб.футов. Затем мы делим это на 60, чтобы узнать, на сколько кубических футов нам нужно переместиться за одну минуту. Это дает нам результат 200, поэтому нам нужен вентилятор, который может перемещать 200 кубических футов воздуха в минуту.
Имейте в виду, что нам все равно придется преодолевать статическое давление. Чтобы найти это, лучше снова попасть в чарты.
Согласно диаграмме, если нам нужно переместить 200 кубических футов в минуту и использовать 5-дюймовую трубу, нам нужно выбрать вентилятор, который может перемещать 200 кубических футов в минуту где-то близко или выше статического давления 0,8 дюйма вод. Ст. На каждые 100 футов трубы.Это создаст скорость 1467 футов / мин.
Совет
Если вас беспокоит шум, помните, что чем выше скорость воздушного потока, тем громче будет работать система. Поэтому, если шум является проблемой, вы можете соответственно увеличить размер вентиляционного канала.
Как это работает
Манометр работает на основе двух правил:
1) Давление равно на одинаковой высоте в одной и той же жидкости, и
2) Давление внизу столба жидкости равно давлению вверху плюс rho (g) (h), где rho — плотность жидкости, g — сила тяжести, а h — высота.
Мэтью Рид (Matthew Reid) — специалист по отоплению в отделе систем отопления, вентиляции и кондиционирования воздуха в Desco Plumbing & Heating Supply Inc. С ним можно связаться по адресу [адрес электронной почты защищен]
Системы с замкнутым контуром — FluidFlow
В общем, есть два основных типа системы, в которых могут быть установлены насосы, системы с открытым и закрытым контуром. Системы с разомкнутым контуром — это контуры, в которых перекачиваемая жидкость подвергается воздействию местной атмосферы в некоторой точке контура. Типичной системой с открытым контуром может быть система градирни, где путь потока является линейным, т.е.е. перенос жидкости между двумя сосудами. И наоборот, системы с замкнутым контуром, как следует из названия, представляют собой замкнутые трубопроводные контуры, в которых перекачиваемая жидкость циркулирует в замкнутом контуре без какого-либо воздействия местной окружающей среды и, как правило, без переноса жидкости в замкнутый контур или из него. Примеры систем с замкнутым контуром включают контуры горячего масла, системы охлаждения / охлажденной воды, системы водяного отопления и кондиционирования воздуха. На рис. 1 представлена замкнутая система охлаждения пресной водой, состоящая из теплообменников, циркуляционных насосов, диафрагм и более 300 м трубопроводов.
Рисунок 1: Охлаждение пресной водой с замкнутым контуром
Одним из уникальных аспектов трубопроводных систем с замкнутым контуром является то, что статическая высота не учитывается при расчетах напора, поскольку эти системы в значительной степени не подвержены влиянию статического давления. Однако, как и в случае с системами с открытым потоком, нам все еще необходимо проверять наличие достаточного NPSHa, чтобы статическое давление во всей системе не падало ниже давления паров жидкости и, следовательно, не приводило к кавитации и т. Д. Любой насос, выбранный для системы с замкнутым контуром, должен быть может транспортировать жидкость в наивысшую точку без вспышки или создания вакуума, а самая низкая точка также должна быть оценена на предмет давления отключения насоса.В замкнутой цепи будут наблюдаться только потери на трение. Поэтому насосы, работающие в системах с замкнутым контуром, необходимы только для преодоления потерь на динамическое трение.
Давайте рассмотрим рабочие условия замкнутой системы с перепадом высоты, скажем, 10,0 м. Циркуляционный насос системы необходим для транспортировки жидкости из нижней части системы (0 м) в верхнюю при 10,0 м. Это будет Первоначально кажется, что насос должен преодолеть разницу в высоте в 10,0 м, однако из-за гравитационных эффектов это не так, поскольку для каждого метра жидкости, перекачиваемой вертикально вверх, соответствует 1.0 M капель жидкости на обратной стороне системы.
Когда система неподвижна, т.е. жидкость не циркулирует, насосы на всасывании и нагнетании имеют одинаковое давление, создаваемое двумя отдельными колоннами жидкости объемом 10,0 м, соединенными вверху. Альтернативный способ рассмотрения этого заключается в том, что давление всасывания, имеющееся в насосе, равно давлению нагнетания, необходимому для перемещения жидкости к верху системы.
Независимо от того, где находится насос в контуре, дифференциальный напор, создаваемый насосом, всегда будет одинаковым.
Как и следовало ожидать, напор, необходимый для поддержания потока в системе с замкнутым контуром, уменьшается по мере уменьшения потока и становится больше по мере увеличения потока. В хорошо спроектированных системах потери на трение будут уменьшаться пропорционально уменьшению расхода.
Крупномасштабные системы с замкнутым контуром сложно проектировать вручную, поскольку они часто имеют множество ответвлений или подсетей.
При выборе центробежного насоса с постоянной скоростью для систем с замкнутым контуром точка наилучшего КПД (BEP) на кривой КПД насоса должна находиться между расчетными точками минимального и максимального расхода на кривой производительности насоса.Это обеспечивает максимальную эффективность работы насоса в ожидаемых условиях эксплуатации.
Кривые производительности, показанные на рисунке 2, показывают, что центробежный насос достигает условий максимального потока 1400 м 3 / ч при 55,0 м TDH и поднимается всего на 5,0 м при минимальном расчетном расходе 700 м 3 / ч . Обратите внимание, что поток, наблюдаемый в этой системе образцов в любой момент времени, зависит от требований системы.
Рисунок 2: Замкнутый контур — насос постоянной скорости
Обратите внимание, что «плоский» профиль кривой производительности насоса предпочтителен для систем с замкнутым контуром с переменным расходом из-за экономии энергии, которая может быть достигнута в условиях более низкого расхода.
Хотя выбор центробежного насоса с «плоским» профилем кривой производительности обеспечивает потенциальную экономию энергии, гораздо более высокая экономия энергии может быть достигнута путем выбора подходящего насоса с ЧРП (рис. 3). Поскольку кривая сопротивления системы неуклонно снижается от максимального до минимального расхода (в данном случае от 1400 до 700 м 3 / ч), можно использовать частотное регулирование для достижения желаемых рабочих условий при низком расходе и, таким образом, добиться гораздо большей экономии. по сравнению с насосом постоянной скорости, использующим дросселирование клапана для регулировки или регулирования потока.
Рисунок 3: Замкнутый контур — Насос с ЧРП
Причина, по которой при использовании насоса с частотно-регулируемым приводом достигается гораздо большее снижение мощности, заключается в том, что достигается значительное снижение рабочей скорости насоса и, во-вторых, изомер КПД насоса BEP точно следует кривой системы. Таким образом, на высоте 700 м 3 / ч частота управления при более низкой рабочей скорости имеет почти такой же КПД, как и при работе насоса на скорости, необходимой для достижения максимального расхода.
Если вы рассматриваете центробежный насос с частотно-регулируемым приводом для приложения, выберите насос с наивысшим КПД с BEP, который находится на уровне максимального расхода или чуть левее него.Поддерживайте подъем напора до минимального расхода настолько низким, насколько позволяет приложение, и проверьте выбранный вами насос с помощью соответствующего программного инструмента. Это позволит вам оценить производительность насоса в различных условиях эксплуатации.