Термопреобразователь это – Термопреобразователь: принцип работы — Все о ЧПУ

Содержание

ТЕРМОПРЕОБРАЗОВАТЕЛЬ — это… Что такое ТЕРМОПРЕОБРАЗОВАТЕЛЬ?


ТЕРМОПРЕОБРАЗОВАТЕЛЬ

устройство для преобразования перем. тока в пост., основанное на термоэлектрич. явлениях. Применяется гл. обр. в термоэлектрических измерительных приборах. Состоит из электрич. нагревателя перем. тока и термоэлемента (термопары). Т. бывают контактные (рабочий спай термоэлемента присоединён непосредственно к нагревателю), бесконтактные (рабочий спай отделён от нагревателя), а также крестообразные. Для уменьшения потерь теплоты и повышения чувствительности Т. делают многоэлеиентныии в помещают в вакуум.

Большой энциклопедический политехнический словарь. 2004.

Синонимы:
  • ТЕРМОПЛАСТЫ
  • ТЕРМОРЕАКТИВНЫЕ ПЛАСТМАССЫ

Смотреть что такое «ТЕРМОПРЕОБРАЗОВАТЕЛЬ» в других словарях:

  • термопреобразователь

    — термопреобразователь …   Орфографический словарь-справочник

  • термопреобразователь — сущ., кол во синонимов: 1 • преобразователь (39) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • термопреобразователь — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN thermal converterTHC …   Справочник технического переводчика

  • термопреобразователь — termoelektrinis keitiklis statusas T sritis automatika atitikmenys: angl. thermal converter; thermo electric converter vok. thermoelektrischer Umformer, m; Thermoumformer, m rus. термопреобразователь, m; термоэлектрический преобразователь, m… …   Automatikos terminų žodynas

  • термопреобразователь — šiluminis keitiklis statusas T sritis automatika atitikmenys: angl. thermal converter vok. Thermoumformer, m rus. термопреобразователь, m pranc. thermoconvertisseur, m …   Automatikos terminų žodynas

  • термопреобразователь — термопреобразов атель, я …   Русский орфографический словарь

  • термопреобразователь (нагреватель и термопара) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN thermal element …   Справочник технического переводчика

  • термопреобразователь сопротивления — 3.1 термопреобразователь сопротивления; ТС: Средство измерений температуры, состоящее из одного или нескольких термочувствительных элементов сопротивления и внутренних соединительных проводов, помещенных в герметичный защитный корпус, внешних… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 6651-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ 6651 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции …   Словарь-справочник терминов нормативно-технической документации

  • БАЗИС (серия контроллеров) — У этого термина существуют и другие значения, см. Базис (значения) …   Википедия

dic.academic.ru

типы и принцип работы :: SYL.ru

Термопреобразователи сопротивления, также называемые резистивными датчиками температуры (RTD), являются устройствами, используемыми для измерения температуры. Многие RTD-элементы состоят из тонкой проволоки, обернутой вокруг керамического или стеклянного сердечника, но также используются и другие конструкции.

Провод RTD — это чистый материал, обычно платина, никель или медь. Металл имеет точное соотношение сопротивления и температуры, которое используется для индикации температуры. Поскольку элементы RTD являются хрупкими, они часто размещаются в защитных датчиках.

RTD, которые имеют более высокую точность и повторяемость, медленно заменяют термопары в промышленных применениях при температуре ниже 600 ° C.

Конструкция

Обычные чувствительные элементы RTD, изготовленные из платины, меди или никеля, имеют повторяемое соотношение сопротивления к температуре (R против T) и диапазон рабочих температур. Отношение Rs к T определяется как величина изменения сопротивления датчика на градус преобразования температуры. Относительное изменение сопротивления (температурный коэффициент сопротивления) изменяется незначительно в пределах полезного диапазона датчика.

Платина была предложена сэром Уильямом Сименсом в качестве элемента для резистивного температурного детектора на лекции Бейкера в 1871 году: это благородный металл и имеет наиболее стабильное соотношение сопротивление-температура в наибольшем диапазоне температур.

Никелевые элементы имеют ограниченный температурный диапазон, потому что величина изменения сопротивления на градус преобразования температуры становится очень нелинейной при температурах выше 300 ° C (572 ° F). Медь имеет очень линейное отношение сопротивления к температуре, однако она окисляется при умеренных температурах и не может использоваться при нагреве выше 150 ° C (302 ° F).

Характеристики соединений

Чистая платина имеет α = 0,003925 Ω / (Ω · ° C) в диапазоне от 0 до 100 °C и используется при создании RTD лабораторного уровня. И, наоборот, два широко признанных стандарта для промышленных термопреобразователей сопротивления IEC 60751 и ASTM E-1137 определяют α = 0,00385 Ом / (Ом · °C). До того как эти стандарты получили широкое распространение, использовалось несколько различных значений. Еще можно найти более старые датчики, изготовленные из платины, которые имеют α = 0,003916 Ом / (Ом · °C) и 0,003902 Ом / (Ом · °C).

Эти различные значения α для платины достигаются легированием: в основном, осторожно вводя примеси в платину. Последние, добавленные во время этого процесса, внедряются в решетчатую структуру платины и приводят к другой кривой R относительно T и, следовательно, к значению α.

Принцип работы

Чтобы охарактеризовать зависимость R от T для любого RTD в диапазоне температур, который представляет собой запланированный диапазон использования, калибровка должна выполняться при градусах, отличных от 0 °C и 100 °C. Это необходимо для удовлетворения требований настройки.

Хотя RTD считаются линейными в работе, необходимо доказать, что они точны в отношении температур, при которых они будут фактически использоваться (см. «Подробности» в опции калибровки сравнения). Два распространенных метода калибровки — это с фиксированной запятой и сравнения.

Калибровки

Настройка с фиксированной точкой используется для получения наивысшей точности национальными метрологическими лабораториями. Он использует тройную точку, температуру замерзания или плавления чистых веществ, таких как вода, цинк, олово и аргон, для создания известной и повторяемой температуры.

Эти ячейки позволяют пользователю воспроизводить фактические условия температурной шкалы ITS-90. Калибровка с фиксированной точкой обеспечивает чрезвычайно точную настройку (в пределах ± 0,001 °C). Распространенным методом калибровки с фиксированной точкой для промышленных датчиков является ледяная баня. Оборудование недорогое, простое в использовании и может вместить несколько датчиков одновременно. Точка льда обозначена как вторичный стандарт, поскольку ее точность составляет ± 0,005 °C (± 0,009 °F) по сравнению с ± 0,001 °C (± 0,0018 °F) для основных фиксированных точек.

Сравнительные калибровки обычно используются со вторичными SPRT и промышленными RTD. Откалиброванные термометры сравниваются с настроенными термопреобразователями сопротивления с помощью ванны, температура которой равномерно стабильна.

В отличие от калибровки с фиксированной точкой, сравнение может быть выполнено при любой температуре от −100 °C до 500 °C (от –148 °F до 932 °F). Этот метод может быть более экономичным, так как несколько датчиков способны калиброваться одновременно с помощью автоматического оборудования. В этих ваннах с электрическим подогревом и хорошо перемешиваемой водой используются силиконовые масла и расплавленные соли в качестве среды для различных настроек температур.

Типы термопреобразователей сопротивления

Три основные категории датчиков RTD — это тонкопленочные, проволочные и спиральные элементы. В то время как эти типы являются наиболее широко используемыми в промышленности, применяются другие более экзотические формы: например, углеродные резисторы используются при сверхнизких температурах (от -173 °C до -273 °C).

Углеродные резисторные элементы дешевы и широко распространены. Они имеют очень воспроизводимые результаты при низких температурах. Также являются наиболее надежной формой при экстремально низких температурах. Как правило, они не страдают от значительного гистерезиса или тензометрических эффектов.

В элементах без натяжения используется проволочная катушка, минимально поддерживаемая в герметичном корпусе, заполненном инертным газом. Эти датчики работают до 961,78 °C и используются в SPRT, которые определяют ITS-90. Они состоят из платиновой проволоки, без натяжения намотанной на опорную конструкцию, поэтому элемент может свободно расширяться и сжиматься в зависимости от температуры. Они очень чувствительны к ударам и вибрации, так как петли платины могут раскачиваться взад и вперед, вызывая деформацию. Типичный пример — термопреобразователь сопротивления pt100.

Тонкая пленка

Тонкопленочные элементы имеют чувствительный фрагмент, который формируется путем нанесения очень тонкого слоя резистивного материала, обычно платинового, на керамическую подложку (покрытие). Этот слой обычно имеет толщину от 10 до 100 нг (от 1 до 10 нанометров).

Эта пленка затем покрывается эпоксидной смолой или стеклом, которое помогает защитить ее, а также действует, как средство от натяжения для внешних подводящих проводов. Недостатки этого типа заключаются в том, что они не так стабильны, как их проволочные или спиральные аналоги.

Они также могут быть использованы только в ограниченном температурном диапазоне из-за разных скоростей расширения подложки и осаждения с сопротивлением, что дает эффект «тензометрического датчика», который можно увидеть в коэффициенте удельной температуры. Эти элементы работают при температурах до 300 °C (572 °F) без дополнительной упаковки, но могут выдерживать до 600 °C (1112 °F), когда они надлежащим образом заключены в стекло или керамику. Специальные высокотемпературные термопреобразователи сопротивления могут использоваться при температуре до 900 °C (1652 °F) с правильной герметизацией.

Проволочная обмотка

Элементы с проволочной обмоткой могут иметь большую точность, особенно для широкого диапазона температур. Диаметр катушки обеспечивает компромисс между механической стабильностью и возможностью расширения проволоки для минимизации деформации и последующего дрейфа. Чувствительный провод наматывается на изолирующую оправку или сердечник. Последний может быть круглым или плоским, но должен быть электрическим изолятором.

Коэффициент теплового расширения материала сердечника обмотки согласован с чувствительным проводом, чтобы минимизировать любую механическую нагрузку. Эта деформация на элементном проводе приведет к погрешности измерения температуры. Чувствительный элемент соединен с более крупным проводом. Он выбирается так, чтобы создавалась совместимость с чувствительным проводом, а их комбинация не производила ЭДС, которая исказила бы тепловые измерения. Эти элементы работают с температурой до 660 °С.

Спирали

Подобные элементы в значительной степени заменили проволочные в промышленности. Это особенно заметно в случае с 50 М термопреобразователями сопротивления. Эта конструкция имеет проволочную катушку, которая может свободно расширяться, в зависимости от температуры, и удерживаться на месте некоторой механической опорой, которая позволяет катушке сохранять свою форму.

Такая конструкция без натяжения позволяет чувствительному проводу расширяться и сжиматься без воздействия других материалов: в этом отношении он аналогичен SPRT, первичному стандарту, на котором основан ITS-90, обеспечивая при этом долговечность, необходимую для промышленного использования.

Основой чувствительного элемента является небольшая катушка из платиновой проволоки. Эта катушка напоминает нить в лампе накаливания. Корпус или оправка представляет собой твердо обожженную керамическую оксидную трубку с одинаково расположенными отверстиями, проходящими поперек осей. Катушка вставляется в отверстия оправки и затем упаковывается очень тонко измельченным керамическим порошком. Это позволяет сенсорному проводу двигаться, оставаясь при этом в хорошем тепловом контакте с процессом. Эти элементы работают при температуре до 850 °С.

Стандарты и нормы

В настоящее время международным стандартом, который устанавливает допуск и отношение температуры к электрическому сопротивлению для платиновых термопреобразователей сопротивления ТСП, является IEC 60751: 2008; ASTM E1137 также используется в США.

Безусловно, наиболее распространенные устройства, используемые в промышленности, имеют номинальное сопротивление 100 Ом при 0 °C и называются датчиками Pt100 («Pt» — символ для платины, «100» для сопротивления в Ом при 0 °C). Также можно получить датчики Pt1000, где 1000 — это сопротивление в омах при 0 °C. Чувствительность стандартного датчика 100 Ом составляет номинальную 0,385 Ом / °C. Также доступны RTD с чувствительностью 0,375 и 0,392 Ом / °C, а также множество других.

Термопреобразователи сопротивления ТСМ конструируются в нескольких формах и в ряде случаев обеспечивают большую стабильность, точность и повторяемость, чем пары. В то время как термопары используют эффект Зеебека для генерации напряжения, вышеупомянутые приборы используют электрическое сопротивление и требуют источника питания для работы. Оно в идеале изменяется почти линейно с температурой в соответствии с уравнением Каллендара – Ван Дюзена. Для его измерения хорошо подходит термопреобразователь сопротивления ДТС.

www.syl.ru

виды, типы конструкции, классы допуска

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.
    Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Расшифровка аббревиатур

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С

-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Внешний вид термопреобразователя ТСМ 1088 1

Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Класс точностиНормы допуска

°C |t |

Диапазон измерения температуры
Платиновые датчикиМедныеНикелевые
ПроволочныеПленочные
AA±0,10+0,0017-50°C …250°C-50°C …150°Cxx
A±0,15+0,002-100°C …450°C-30°C …300°C-50°C …120°Cx
B±0,30+0,005-196°C …660°C-50°C …500°C-50°C …200°Cх
С±0,60+0,01-196°C …660°C-50°C …600°C-180°C …200°C-60°C …180°C

Приведенная в таблице погрешность отвечает текущим нормам.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

  • 2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик. Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7. Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления
  • 3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.
  • 4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.

Обслуживание

Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.

Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:

  • Проверка условий, в которых эксплуатируется датчик.
  • Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
  • Помимо этого проверяется наличие пломб.
  • Проверяется заземление.

Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.

Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.

Платиновый эталонный ПТС (датчик ЭТС 100)

Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.

Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)

Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.

www.asutpp.ru

Термопреобразователи и приборы температуры — Блог о строительстве

Для измерения температуры используют указатели температуры расширения, термопреобразователи сопротивления (ТС), термоэлектрические и мано­метрические термопреобразователи и приборы. В дистанционных системах передачи показаний с термопреобразователями сопротивления и термоэлектропреобразователями используют вторичные приборы — логометры, автоматические мосты, милливольтметры и потенциометры.

Указатели температуры расширенияслужат для измерения температуры в помещениях  внешнего воздуха и т.

п. Чувствительный элемент представляет собой баллон с жидкостью, при нагревании которого жидкость расширяется и ее столбик подымается в отсчетном устройстве. Положение конца столбика относительно шкалы указателя температуры соответствует температуре среды, в какой находится баллон.

Термопреобразователи сопротивления(ГОСТ 6651—78) используют в системах, где требуется определять высочайшие температуры и дистанционно передавать показания. Механизм работы таких преобразователей основан на свойстве металлов изменять свое сопротивление при изменении температуры.

Чувствительные элементы термопреобразователей делают из пла­тины (ТСП) либо меди (ТСМ). Платиновую либо медную проволоку наматывают на каркас.

Размеры каркаса зависимо от конструкции термо­преобразователя могут быть от 60 до 100 мм. Каркас с чувствительным элементом 1 (рис. 1) помещен в корпус защитной арматуры, выполненной  обычно, из нержавеющей стали.

Провода проходят в изолирующих керамических бусах3и подсоединяются к зажимам5головки термо­преобразователя сопротивления. К полосы связи преобразователь подсоединяют через сальниковое уплотнение4.На технологических трубопроводах преобразователь вставляют в гнездо и крепят штуцером 6. Монтажная длина термопреобразователей от 10 до 3150 мм, поперечник защитной арматуры — от 10 до 300 мм.

Статические свойства преобразования стандартизированы (ГОСТ 6651—78) и выражают зависимость сопротивления чувствительного элемента от измеряемой температуры.

Черта обозначается 1П, 100П, 10М, 100М и т. д. Число .(1, 10, 100) обозначает сопротивление чувствительного элемента при 0° С (1, 10, 100 Ом), а буковка — материал чувствительного элемента.

По точности измерения преобразователи выпускают 5 классов, которые обозначают римскими цифрами. Платиновые термопреобразователи сопротивления используют для измерения температуры в спектре минус 260 – плюс 1100° С, а медные – минус 200 – плюс 200° С.

Применение преобразователей ограничено как из-за сравнимо низ­кой наибольшей температуры, так и из-за значимых размеров кар­каса чувствительного элемента.

Термоэлектропреобразователииспользуют для измерения температуры в границах до 1800 °С (ГОСТ 6616—74).

Действие термоэлектропреобразователя основано на следующем принципе  Если спаять два стержня из разных металлов, а потом спаянный (жаркий) и свободные (прохладные) концы поместить в среды с разными температурами, то меж свободными концами стержней возникает разность потенциалов. Свободные концы соединяют с приемником тока и получают электрическую цепь, в какой находится источник э. д.

с. Термо­электродвижущая сила т. э.

д. с. в цепи находится в зависимости от разности температур, в которые помещены свободные и спаянные концы преобразователя, и от параметров металлов либо сплавов, из которых сделаны стержни.

В индустрии используют преобразователи из следующих сплавов  хромель-копель (ХК), хромель-алюмель (ХА), платинородий-платина (ПП), платинородий (30% родия)-платинородий (6% родия) (ПР). Каждый тип термоэлектрического преобразователя (ХК, ХА, ПП, ПР) имеет свою градуировочную характеристику — зависимость меж разни­цей температур жаркого и прохладных концов и возникающей меж ними т.

э. д. с.

Термоэлектропреобразователь устроен ана­логично термопреобразователю сопротивления (рис. 2). Чувствительный элемент, помещенный в корпус 1, представляет собой спай термоэлектродов припаянный к серебряному диску (жаркий конец).

Термоэлектроды изготовляют из обозначенных выше металлов либо сплавов. Термоэлектроды выведены через каналы изолирующих бус на зажимы головки 3. К корпусам аппаратов либо трубопроводов термоэлектропреобразователь укрепляют штуцерами либо флан­цами.

Сложность внедрения термоэлектропреобразователей заключается в необходимости стабилизации температуры их свободных (прохладных) концов. Если температура прохладных концов, т. е.

температура окружающего воздуха, будет изменяться, а температура, измеряемая в точке погружения жаркого конца, остается постоянной, значения т. э. д.

с. тоже будут изменяться. Нечувствитель­ности системы измерения к колебаниям температуры прохладных концов добиваются методом термостатирования прохладных концов термоэлектропреобразователя, электронной компенсацией температурных воздействий в месте установки термоэлектропреобразователя либо электронной компенсацией температурных воздействий в месте установки вторичного прибора.

На практике в главном используют последний метод, при котором соединительную линию меж термоэлектропреобразователем и вторич­ным прибором монтируют особыми компенсационными проводами. Для каждого типа термоэлектропреобразователя установлена определен­ная марка компенсационных проводов. При подсоединении прохладных кон­цов термоэлектропреобразователя к компенсационным проводам меж каждым термоэлектродом и проводом появляется дополнительная термо­пара.

Материалы компенсационных проводов и метод их подключения выбирают такими, чтоб т. э. д.

с. каждой дополнительной термопары были равны меж собой и включены встречно. В данном случае суммар­ная т.

э. д. с.

будет зависеть только от разности температур жаркого кон­ца термоэлектропреобразователя и свободных концов компенсационных проводов, подключаемых на вход вторичного прибора. Во вторичном при­боре устанавливают устройство, которое автоматом заносит поправку , в значение т. э.

д. с. зависимо от температуры, при которой находятся свободные концы компенсационных проводов снутри прибора.

Манометрические указатели температуры(ГОСТ 8624—80) используют для изме­рения температуры в зонах аппаратов. Принцип их деяния основан на зависимости меж температурой и давлением воды либо газа при неизменном объеме. Измерительную систему указателя температуры заполняют жид­костью либо газом.

Термобаллон 7 (рис. 3а)погружают в среду, темпера­туру которой будут определять. При помощи капилляра 6 термобаллон 7 соединяют с манометром9.При изменении температуры среды, в кото­рую погружен термобаллон, меняется давление заполняющей систему воды либо газа.

Через капилляр 6 это давление подводится к пружи­не 1 (рис. 3б), припаянной к корпусу 8. При повышении температуры термобал­лона 7 давление заполняющего систему газа возрастает и под его действием раскручивается манометрическая пру­жина.

При уменьшении температуры пружина соответственно закручивается. Через тягу4перемещение конца пружи­ны передается на трибко-секторный меха­низм. На ось 5 трибки надета стрелка 2, перемещающаяся по шкале пропорционально изменению давления.

Литература: Б. З.

Барласов, В. И. Ильин “Наладка устройств и систем автоматизации.”

Для измерения температуры применяют термометры расширения, термопреобразователи сопротивления (ТС), термоэлектрические и мано­метрические термопреобразователи и приборы. В дистанционных системах передачи показаний с термопреобразователями сопротивления и термоэлектропреобразователями применяют вторичные приборы — логометры, автоматические мосты, милливольтметры и потенциометры.Чувствительный элемент платинового термопреобразователя: 1 — платиновые спирали; 2 — керамический каркас; 3 – изоляционный порошок; 4— выводы; 5 — глазурь; 6 — металлическая оболочка.Термометры расширения служат для измерения температуры в помещениях  наружного воздуха и т. п.Чувствительный элемент представляет собой баллон с жидкостью, при нагревании которого жидкость расширяется и ее столбик поднимается в отсчетном устройстве.Положение конца столбика относительно шкалы термометра соответствует температуре среды, в которой находится баллон.Рисунок 1.

Термопреобразователь сопротивления.Термопреобразователи сопротивления (ГОСТ 6651—78) применяют в системах, где требуется измерять высокие температуры и дистанционно передавать показания. Принцип работы таких преобразователей основан на свойстве металлов изменять свое сопротивление при изменении температуры.Чувствительные элементы термопреобразователей выполняют из пла­тины (ТСП) или меди (ТСМ).Платиновую или медную проволоку наматывают на каркас.Размеры каркаса в зависимости от конструкции термо­преобразователя могут быть от 60 до 100 мм. Каркас с чувствительным элементом 1 (рис.

1) помещен в корпус защитной арматуры, выполненной, как правило, из нержавеющей стали.Провода проходят в изолирующих керамических бусах3и подсоединяются к зажимам5головки термо­преобразователя сопротивления. К линии связи преобразователь подсоединяют через сальниковое уплотнение4.На технологических трубопроводах преобразователь вставляют в гнездо и укрепляют штуцером 6. Монтажная длина термопреобразователей от 10 до 3150 мм, диаметр защитной арматуры — от 10 до 300 мм.Рисунок 2.

Термоэлектрический преобразователь хромель-копель.Статические характеристики преобразования стандартизированы (ГОСТ 6651—78) и выражают зависимость сопротивления чувствительного элемента от измеряемой температуры. Характеристика обозначается 1П, 100П, 10М, 100М и т. д.

Число (1, 10, 100) обозначает сопротивление чувствительного элемента при 0°С(1, 10, 100 Ом), а буква — материал чувствительного элемента.По точности измерения преобразователи выпускают пяти классов, которые обозначают римскими цифрами. Платиновые термопреобразователи сопротивления применяют для измерения температуры в диапазоне минус 260 – плюс 1100°С, а медные – минус 200 – плюс 200°С.Применение преобразователей ограничено как из-за сравнительно низ­кой максимальной температуры, так и из-за значительных размеров кар­каса чувствительного элемента.Термоэлектропреобразователи применяют для измерения температуры в пределах до 1800°С (ГОСТ 6616—74).Действие термоэлектропреобразователя основано на следующем принципе. Если спаять два стержня из различных металлов, а затем спаянный (горячий) и свободные (холодные) концы поместить в среды с различными температурами, то между свободными концами стержней возникает разность потенциалов.

Свободные концы соединяют с приемником тока и получают электрическую цепь, в которой находится источник э. д. с.

Термо­электродвижущая сила т. э. д.

с. в цепи зависит от разности температур, в которые помещены свободные и спаянные концы преобразователя, и от свойств металлов или сплавов, из которых изготовлены стержни.В промышленности применяют преобразователи из следующих сплавов  хромель-копель (ХК), хромель-алюмель (ХА), платинородий-платина (ПП), платинородий (30% родия)-платинородий (6% родия) (ПР). Каждый тип термоэлектрического преобразователя (ХК, ХА, ПП, ПР) имеет свою градуировочную характеристику — зависимость между разни­цей температур горячего и холодных концов и возникающей между ними т.

э. д. с.Рисунок 3.

Термобаллон.Термоэлектропреобразователь устроен ана­логично термопреобразователю сопротивления (рис. 2). Чувствительный элемент, помещенный в корпус 1, представляет собой спай термоэлектродов, припаянный к серебряному диску (горячий конец).

Термоэлектроды изготовляют из указанных выше металлов или сплавов. Термоэлектроды выведены через каналы изолирующих бус на зажимы головки 3. К корпусам аппаратов или трубопроводов термоэлектропреобразователь крепят штуцерами или флан­цами.Сложность применения термоэлектропреобразователей заключается в необходимости стабилизации температуры их свободных (холодных) концов.

Если температура холодных концов, т. е. температура окружающего воздуха, будет изменяться, а температура, измеряемая в точке погружения горячего конца, останется неизменной, значения т.

э. д. с.

тоже будут изменяться. Нечувствитель­ности системы измерения к колебаниям температуры холодных концов достигают путем термостатирования холодных концов термоэлектропреобразователя, электрической компенсацией температурных влияний в месте установки термоэлектропреобразователя или электрической компенсацией температурных влияний в месте установки вторичного прибора.На практике в основном применяют последний способ, при котором соединительную линию между термоэлектропреобразователем и вторич­ным прибором монтируют специальными компенсационными проводами. Для каждого типа термоэлектропреобразователя установлена определен­ная марка компенсационных проводов.

При подсоединении холодных кон­цов термоэлектропреобразователя к компенсационным проводам между каждым термоэлектродом и проводом образуется дополнительная термо­пара. Материалы компенсационных проводов и способ их подключения выбирают такими, чтобы т. э.

д. с. каждой дополнительной термопары были равны между собой и включены встречно.

В этом случае суммар­ная т. э. д.

с. будет зависеть только от разности температур горячего кон­ца термоэлектропреобразователя и свободных концов компенсационных проводов, подключаемых на вход вторичного прибора. Во вторичном при­боре устанавливают устройство, которое автоматически вносит поправку , в значение т.

э. д. с.

в зависимости от температуры, при которой находятся свободные концы компенсационных проводов внутри прибора. Манометрические термометры(ГОСТ 8624—80) применяют для изме­рения температуры в зонах аппаратов. Принцип их действия основан на зависимости между температурой и давлением жидкости или газа при постоянном объеме.

Измерительную систему термометра заполняют жид­костью или газом.Термобаллон 7 (рис. 3а)погружают в среду, темпера­туру которой будут измерять. С помощью капилляра 6 термобаллон 7 соединяют с манометром9.При изменении температуры среды, в кото­рую погружен термобаллон, изменяется давление заполняющей систему жидкости или газа.

Через капилляр 6 это давление подводится к пружи­не 1 (рис. 3б), припаянной к корпусу 8. При повышении температуры термобал­лона 7 давление заполняющего систему газа увеличивается и под его действием раскручивается манометрическая пру­жина.

При уменьшении температуры пружина соответственно закручивается. Через тягу4перемещение конца пружи­ны передается на трибко-секторный меха­низм. На ось 5 трибки насажена стрелка 2, перемещающаяся по шкале пропорционально изменению давления.Поделитесь полезной статьей:

Источники:

blog-potolok.ru

Термопреобразователь сопротивлений: типы и принцип работы

Термопреобразователь сопротивлений: типы и принцип работы

15.02.2019 00:31

Термопреобразователи сопротивления, также называемые резистивными датчиками температуры (RTD), являются устройствами, используемыми для измерения температуры. Многие RTD-элементы состоят из тонкой проволоки, обернутой вокруг керамического или стеклянного сердечника, но также используются и другие конструкции.

Провод RTD — это чистый материал, обычно платина, никель или медь. Металл имеет точное соотношение сопротивления и температуры, которое используется для индикации температуры. Поскольку элементы RTD являются хрупкими, они часто размещаются в защитных датчиках.

RTD, которые имеют более высокую точность и повторяемость, медленно заменяют термопары в промышленных применениях при температуре ниже 600 ° C.

Конструкция

Обычные чувствительные элементы RTD, изготовленные из платины, меди или никеля, имеют повторяемое соотношение сопротивления к температуре (R против T) и диапазон рабочих температур. Отношение Rs к T определяется как величина изменения сопротивления датчика на градус преобразования температуры. Относительное изменение сопротивления (температурный коэффициент сопротивления) изменяется незначительно в пределах полезного диапазона датчика.

Платина была предложена сэром Уильямом Сименсом в качестве элемента для резистивного температурного детектора на лекции Бейкера в 1871 году: это благородный металл и имеет наиболее стабильное соотношение сопротивление-температура в наибольшем диапазоне температур.

Никелевые элементы имеют ограниченный температурный диапазон, потому что величина изменения сопротивления на градус преобразования температуры становится очень нелинейной при температурах выше 300 ° C (572 ° F). Медь имеет очень линейное отношение сопротивления к температуре, однако она окисляется при умеренных температурах и не может использоваться при нагреве выше 150 ° C (302 ° F).

Характеристики соединений

Чистая платина имеет α = 0,003925 Ω / (Ω · ° C) в диапазоне от 0 до 100 °C и используется при создании RTD лабораторного уровня. И, наоборот, два широко признанных стандарта для промышленных термопреобразователей сопротивления IEC 60751 и ASTM E-1137 определяют α = 0,00385 Ом / (Ом · °C). До того как эти стандарты получили широкое распространение, использовалось несколько различных значений. Еще можно найти более старые датчики, изготовленные из платины, которые имеют α = 0,003916 Ом / (Ом · °C) и 0,003902 Ом / (Ом · °C).

Эти различные значения α для платины достигаются легированием: в основном, осторожно вводя примеси в платину. Последние, добавленные во время этого процесса, внедряются в решетчатую структуру платины и приводят к другой кривой R относительно T и, следовательно, к значению α.

Принцип работы

Чтобы охарактеризовать зависимость R от T для любого RTD в диапазоне температур, который представляет собой запланированный диапазон использования, калибровка должна выполняться при градусах, отличных от 0 °C и 100 °C. Это необходимо для удовлетворения требований настройки.

Хотя RTD считаются линейными в работе, необходимо доказать, что они точны в отношении температур, при которых они будут фактически использоваться (см. «Подробности» в опции калибровки сравнения). Два распространенных метода калибровки — это с фиксированной запятой и сравнения.

Калибровки

Настройка с фиксированной точкой используется для получения наивысшей точности национальными метрологическими лабораториями. Он использует тройную точку, температуру замерзания или плавления чистых веществ, таких как вода, цинк, олово и аргон, для создания известной и повторяемой температуры.

Эти ячейки позволяют пользователю воспроизводить фактические условия температурной шкалы ITS-90. Калибровка с фиксированной точкой обеспечивает чрезвычайно точную настройку (в пределах ± 0,001 °C). Распространенным методом калибровки с фиксированной точкой для промышленных датчиков является ледяная баня. Оборудование недорогое, простое в использовании и может вместить несколько датчиков одновременно. Точка льда обозначена как вторичный стандарт, поскольку ее точность составляет ± 0,005 °C (± 0,009 °F) по сравнению с ± 0,001 °C (± 0,0018 °F) для основных фиксированных точек.

Сравнительные калибровки обычно используются со вторичными SPRT и промышленными RTD. Откалиброванные термометры сравниваются с настроенными термопреобразователями сопротивления с помощью ванны, температура которой равномерно стабильна.

В отличие от калибровки с фиксированной точкой, сравнение может быть выполнено при любой температуре от −100 °C до 500 °C (от –148 °F до 932 °F). Этот метод может быть более экономичным, так как несколько датчиков способны калиброваться одновременно с помощью автоматического оборудования. В этих ваннах с электрическим подогревом и хорошо перемешиваемой водой используются силиконовые масла и расплавленные соли в качестве среды для различных настроек температур.

Типы термопреобразователей сопротивления

Три основные категории датчиков RTD — это тонкопленочные, проволочные и спиральные элементы. В то время как эти типы являются наиболее широко используемыми в промышленности, применяются другие более экзотические формы: например, углеродные резисторы используются при сверхнизких температурах (от -173 °C до -273 °C).

Углеродные резисторные элементы дешевы и широко распространены. Они имеют очень воспроизводимые результаты при низких температурах. Также являются наиболее надежной формой при экстремально низких температурах. Как правило, они не страдают от значительного гистерезиса или тензометрических эффектов.

В элементах без натяжения используется проволочная катушка, минимально поддерживаемая в герметичном корпусе, заполненном инертным газом. Эти датчики работают до 961,78 °C и используются в SPRT, которые определяют ITS-90. Они состоят из платиновой проволоки, без натяжения намотанной на опорную конструкцию, поэтому элемент может свободно расширяться и сжиматься в зависимости от температуры. Они очень чувствительны к ударам и вибрации, так как петли платины могут раскачиваться взад и вперед, вызывая деформацию. Типичный пример — термопреобразователь сопротивления pt100.

Тонкая пленка

Тонкопленочные элементы имеют чувствительный фрагмент, который формируется путем нанесения очень тонкого слоя резистивного материала, обычно платинового, на керамическую подложку (покрытие). Этот слой обычно имеет толщину от 10 до 100 нг (от 1 до 10 нанометров).

Эта пленка затем покрывается эпоксидной смолой или стеклом, которое помогает защитить ее, а также действует, как средство от натяжения для внешних подводящих проводов. Недостатки этого типа заключаются в том, что они не так стабильны, как их проволочные или спиральные аналоги.

Они также могут быть использованы только в ограниченном температурном диапазоне из-за разных скоростей расширения подложки и осаждения с сопротивлением, что дает эффект «тензометрического датчика», который можно увидеть в коэффициенте удельной температуры. Эти элементы работают при температурах до 300 °C (572 °F) без дополнительной упаковки, но могут выдерживать до 600 °C (1112 °F), когда они надлежащим образом заключены в стекло или керамику. Специальные высокотемпературные термопреобразователи сопротивления могут использоваться при температуре до 900 °C (1652 °F) с правильной герметизацией.

Проволочная обмотка

Элементы с проволочной обмоткой могут иметь большую точность, особенно для широкого диапазона температур. Диаметр катушки обеспечивает компромисс между механической стабильностью и возможностью расширения проволоки для минимизации деформации и последующего дрейфа. Чувствительный провод наматывается на изолирующую оправку или сердечник. Последний может быть круглым или плоским, но должен быть электрическим изолятором.

Коэффициент теплового расширения материала сердечника обмотки согласован с чувствительным проводом, чтобы минимизировать любую механическую нагрузку. Эта деформация на элементном проводе приведет к погрешности измерения температуры. Чувствительный элемент соединен с более крупным проводом. Он выбирается так, чтобы создавалась совместимость с чувствительным проводом, а их комбинация не производила ЭДС, которая исказила бы тепловые измерения. Эти элементы работают с температурой до 660 °С.

Спирали

Подобные элементы в значительной степени заменили проволочные в промышленности. Это особенно заметно в случае с 50 М термопреобразователями сопротивления. Эта конструкция имеет проволочную катушку, которая может свободно расширяться, в зависимости от температуры, и удерживаться на месте некоторой механической опорой, которая позволяет катушке сохранять свою форму.

Такая конструкция без натяжения позволяет чувствительному проводу расширяться и сжиматься без воздействия других материалов: в этом отношении он аналогичен SPRT, первичному стандарту, на котором основан ITS-90, обеспечивая при этом долговечность, необходимую для промышленного использования.

Основой чувствительного элемента является небольшая катушка из платиновой проволоки. Эта катушка напоминает нить в лампе накаливания. Корпус или оправка представляет собой твердо обожженную керамическую оксидную трубку с одинаково расположенными отверстиями, проходящими поперек осей. Катушка вставляется в отверстия оправки и затем упаковывается очень тонко измельченным керамическим порошком. Это позволяет сенсорному проводу двигаться, оставаясь при этом в хорошем тепловом контакте с процессом. Эти элементы работают при температуре до 850 °С.

Стандарты и нормы

В настоящее время международным стандартом, который устанавливает допуск и отношение температуры к электрическому сопротивлению для платиновых термопреобразователей сопротивления ТСП, является IEC 60751: 2008; ASTM E1137 также используется в США.

Безусловно, наиболее распространенные устройства, используемые в промышленности, имеют номинальное сопротивление 100 Ом при 0 °C и называются датчиками Pt100 («Pt» — символ для платины, «100» для сопротивления в Ом при 0 °C). Также можно получить датчики Pt1000, где 1000 — это сопротивление в омах при 0 °C. Чувствительность стандартного датчика 100 Ом составляет номинальную 0,385 Ом / °C. Также доступны RTD с чувствительностью 0,375 и 0,392 Ом / °C, а также множество других.

Термопреобразователи сопротивления ТСМ конструируются в нескольких формах и в ряде случаев обеспечивают большую стабильность, точность и повторяемость, чем пары. В то время как термопары используют эффект Зеебека для генерации напряжения, вышеупомянутые приборы используют электрическое сопротивление и требуют источника питания для работы. Оно в идеале изменяется почти линейно с температурой в соответствии с уравнением Каллендара – Ван Дюзена. Для его измерения хорошо подходит термопреобразователь сопротивления ДТС.

www.navolne.life

описание проборов и их погрешность

Термопреобразователь — это прибор, который создан для измерения температуры. Принцип действия указанного устройства построен на электрическом сопротивлении металлов и отдельных сплавов. Основным элементом термопреобразователей принято считать полупроводники. Некоторые специалисты называют их терморезисторами.

Если рассматривать стандартный термопреобразователь, то в нем имеется только один резистор. Выполнен он полностью из металлической проволоки. В некоторых случаях его могут делать из пленки. Платиновые термопреобразователи на сегодняшний день считаются наиболее распространенными. Связано это с тем, что данный металл имеет хорошую зависимость сопротивления от температуры. Также платина отличается повышенной стойкостью к окислению. Воспроизводимость термопреобразователи данного типа показывают довольно высокую.

Современные модели делаются из платины высокой чистоты. В данном случае температурный коэффициент металла находится на уровне 0,003. Однако на рынке имеется множество медных и никелевых устройств. Все технические требования к ним диктуются ГОСТом. В частотности, данная система единства измерений приводит диапазоны температур, классы точности и стандартны зависимости сопротивлений.

Двухпроводные модификации

Для работы в газообразной среде используется двухпроводной термопреобразователь сопротивления. Схема его устройства довольно проста. В верхней части находится чувствительный элемент с проводником. Соединяется он со штуцером. В нижней части корпуса имеются зажимы и кабель. Погрешность при минусовых температурах у моделей не превышает 0.3 градуса.

Допуск по ГОСТу 6651 указанные модификации имеют серии А. Если рассматривать термопреобразователь сопротивления PT100, то параметр минимальной температуры устройства лежит в районе -60 градусов. Если говорить про конструктивные особенности моделей, то важно отметить, что они производятся с герметиком. Выводов, как правило, имеется два. Непосредственно зажимы устанавливаются в передней части корпуса.

Трехпроводные термопреобразователи

Трехпроводной термопреобразователь сопротивлений отлично подходит для жидкой среды. Однако параметр минимальной температуры у моделей в среднем равняется -30 градусов. Также важно отметить, что погрешность в агрессивной среде может доходить до 0.45 градусов. Выводов в устройствах данного типа имеется два. Непосредственно допуск по ГОСТу 6651 имеется серии А. Показатель минимальной допустимой температуры колеблется в районе 230 градусов.

Если рассматривать термопреобразователь сопротивления ТС 1088, то длина его монтажной части достигает 100 мм. Если говорить про модификации с клеммной головкой, то у них имеется три выхода. Защитная арматура применяется с маркировкой 12Х. Показатель тепловой инерции может доходить до 10 с. В свою очередь, параметр максимального условного давления равняется в среднем 6.2 Ру. Поверка термопреобразователей сопротивления производится при помощи калибраторов температуры.

Четырехпроводные устройства

Четырехпроводной термопреобразователь сопротивлений создан для замеров температуры в жидкой среде. Если говорить про погрешность сопротивления, то этот параметр способен доходить до 0.03 Ом. В данном случае чувствительность приборов составляет в среднем 33 мк. Если говорить про модификации с допуском А, то минимальная температура, при которой они способны работать, – 30 градусов ниже нуля. Номинальная статическая характеристика устройств доходит до 100 МП. Защитная арматура во многих модификациях применяется с маркировкой 12Х.

Если рассматривать термопреобразователь сопротивления ДТС 105, то показатель максимальной температуры составляет 230 градусов. Допускаемый предел отклонений равняется не более 0.15 Т. Также важно отметить, что устройства этого типа выпускаются с клеммными головками. Изоляция в них применяется только керамическая. В данном случае зажимы устанавливаются в передней части корпуса. Если говорить про чувствительность, то она у этих устройств максимум составляет 32 мк.

Платиновые модификации

Платиновый термопреобразователь сопротивления (КТСП) способен похвастаться отличным показателем тепловой инерции. Однако в данном случае важно учитывать допуск модели по ГОСТу 6651. Если рассматривать модификации серии А, то в этой ситуации номинальная статическая характеристика устройств не превышает 50 П. Показатель тепловой инерции в свою очередь равняется 10 с.

Максимум температуру термопреобразователь сопротивления (платиновый) серии А способен переносить 240 градусов. Защитные арматуры у моделей чаще всего используются с маркировкой 12Х. Если рассматривать с допуском серии В термопреобразователь сопротивления (ГОСТ 6651), то у него параметр номинальной статической характеристики равняется 100 П. Показатель тепловой инерции в свою очередь достигает 25 с.

Медные устройства и их параметры

Термопреобразователь сопротивления (медный) подходит только для газообразной среды. По параметру погрешности модификации довольно сильно отличаются. В первую очередь нужно рассмотреть термопреобразователи с допуском серии А. Используются они при температуре даже -50 градусов. Однако чувствительность у них не слишком хорошая. Данный параметр в среднем не превышает 34 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность в среднем равняется 0.5 градусов.

Показатель тепловой инерции в свою очередь доходит до 10 с. В данном случае максимальная возможная температура для моделей равняется 230 градусов. Допускаемый предел отклонений при этом доходит до 0.12 Т. Если говорить про конструктивные особенности, то клеммные головки у моделей данного типа отсутствуют. Герметик во многих конфигурациях используется с порошком. Непосредственно изоляторы часто применяются кремниевого типа. Если рассматривать термопреобразователи с допуском серии В, то они имеют чувствительность на уровне 40 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность может доходить до 0.45 градусов.

Рассматривая конструктивные особенности модификаций, важно отметить, что множество моделей оснащены клеммными коробками. В данном случае герметик стандартно применяется с порошком. Непосредственно зажимы устанавливаются в передней части корпуса. Защитная арматура чаще всего применяется с маркировкой 15Х.

Никелевые устройства

Никелевый термопреобразователь сопротивлений на сегодняшний день является сильно востребованным. В первую очередь это вызвано тем, что у моделей высокий параметр допускаемых придельных отклонений. Также многие модификации способны похвастаться отличной проводимостью. Если рассматривать устройства с допуском по ГОСТУ 6651 серии А, то важно упомянуть, что параметр погрешности у них не превышает 0.23 градуса. Допускаемый предел отклонений в свою очередь находится на уровне 0.12 Т.

Номинальная статическая характеристика моделей в среднем равняется 30 П. Однако важно также рассмотреть модификации с доступом серии В. Корпуса у них имеются защищенные, и предельную температуру они выдерживают в 230 градусов. Длина монтажной части у моделей в среднем не превышает 100 мм. Если говорить про основные параметры, то важно упомянуть о том, что чувствительность у приборов в среднем составляет 35 мк. Максимальное условное давление системой выдерживается в 6.6 Ру. Параметр тепловой инерции никогда не превышает 13 с.

Высокотемпературные модели

Высокотемпературный термопреобразователь сопротивлений может выпускаться с разным допуском. В зависимости от него будет меняться параметр погрешности, да и другие показатели прибора. Если говорить про доступ серии А, то термопреобразователи данного типа имеют высокое условное давление. Минимум приборы использоваться могут при температуре в -30 градусов. Корпуса у данных устройств хорошо защищены от пыли. Допускаемый предел погрешности прибора не превышает 0.12 Т. Чувствительность в свою очередь равняется 33 мк.

Номинальная статическая характеристика термопреобразователей составляет 40 П. Однако важно также рассмотреть модификации с доступом серии В. Согласно ГОСТу 6651 показатель чувствительности у них обязан минимум равняться 20 мк. При температуре свыше 0 градусов показатель погрешности приборов не превышает 0.44 градусов.

Если говорить про конструктивные особенности моделей, то зажимы у них установлены в передней части корпуса. Непосредственно головка располагается вверху прибора. Всего выводов имеется два. Также важно упомянуть, что термопреобразователи данного типа оснащены керамической теплоизоляцией.

Особенности погружных модификаций

Погружной термопреобразователь в обязательном порядке оснащается клеммной коробкой. Жилы кабеля у многих моделей скрываются с оболочкой. Зажимы в данном случае располагаются в нижней части корпуса. Непосредственно параметры изделия тесно связаны с серией доступа по ГОСТУ 6651. Однако сразу следует отметить, что погружной термопреобразователь может эксплуатироваться в агрессивных средах. Если рассматривать модификации с допуском серии А, то чувствительность прибора в этом случае не превышает 42 мк. Погрешность при этом равняется 0.02 градуса. Однако важно учитывать, что показатель тепловой инерции никогда не превысит 10 с.

Номинальная статическая характеристика погружных устройств составляет 50 П по ГОСТу 6651. Всего выводов в представленных термопреобразователях имеется два. Также важно рассмотреть модели с доступом серии В. В первую очередь внимания заслуживает высокий параметр чувствительности — на уровне 30 мк. Все это дает возможность снизить погрешность прибора до 0.023 градусов. Максимальная температура среды в данном случае не должна превышать 240 градусов. Длина монтажной части у моделей в среднем составляет 85 мм. Непосредственно защитная арматура применяется с маркировкой 12Х. Показатель тепловой инерции у термопреобразователей не превышает 3 с.

Модели взрывозащищенного исполнения

Термопреобразователь этого типа предназначен для работы в газообразной среде. В данном случае клеммные головки применяются со штуцером. Максимум температуру приборы способны выдерживать на уровне 250 градусов. Показатель тепловой инерции тесно связан с серией доступа устройства. Однако важно отметить, что все модели максимальное условное давление выдерживают на уровне 6.7 Ру. Если рассматривать приборы с доступом серии А, то важно упомянуть о том, что погрешность при температуре свыше 0 градусов равняется 0.035 градуса.

Клеммная головка в данных конфигурациях устанавливается в верхней части корпуса. Непосредственно номинальная статическая характеристика у термопреобразователей не превышает 60 П. Допускаемый предел отклонений прибора в среднем составляет 0.20 Т. Также важно рассмотреть термопреобразователи с доступом серии В. Выводов у них имеется три. Непосредственно изоляция применяется керамического типа. Как говорилось ранее, максимальное условное давление выдерживают на уровне 6.7 Ру. Минимум модели могут эксплуатироваться при температуре в -30 градусов.

Чувствительность устройств не превышает 40 мк. Погрешность при температуре свыше 0 градусов равняется примерно 0.040 градусов. Номинальная статическая характеристика приборов составляет 40 П. Монтажная часть у моделей не превышает 80 мм. Параметр тепловой инерции в устройствах довольно высокий. Однако допускаемый предел отклонений равняется лишь 0.33 Т.

Погрешность ТСП-0196-01

Термопреобразователь сопротивления ТСП 0196-01 предназначен для жидкой среды. По ГОСТу 6651 допуск он имеет серии В. Минимальная температура среды равняется -35 градусов. Номинальная статическая характеристика прибора не превышает 50 П. Если рассматривать модификации с клеммными коробками, то длина монтажной части у них равняется 85 мм. Защитная арматура у модели применятся с маркировкой 13Х. Показатель тепловой инерции прибора находится на уровне 15 с. В свою очередь показатель максимальной температуры составляет 240 градусов.

Допускаемый предел отклонений в среднем не превышает 0.15 Т. При температуре свыше 0 градусов термопреобразователь сопротивления ТСП 0196-01 погрешность дает в 0.033 градусов. Конфигурация с клеммными коробками оснащается тремя выводами. В данном случае чувствительный элемент располагается в передней части корпуса. Непосредственно изоляция предусмотрена производителем керамического типа. Герметик в свою очередь применятся с порошком. Таким образом, корпус довольно сильно защищен, и с окислением металла у данной модели проблемы возникают редко.

Модель ТСМ-0196-02

Термопреобразователь сопротивления ТСМ 0196-02 предназначен для работы в жидкой среде. Отличается он хорошей проводимостью, и высоким параметром максимальной температуры. Однако в первую очередь следует отметить, что допуск по ГОСТу 6651 он имеет серии А. В данном случае показатель минимальной температуры равняется -50 градусов.

Для лабораторных исследований представленный экземпляр применяется довольно часто. При температуре свыше 0 градусов погрешность его равняется не более 0.045 градусов. Номинальная статическая характеристика прибора составляет около 55 П. Монтажная часть у данной модели равняется 85 мм. Непосредственно защищенная арматура используется с маркировкой 12Х.

Параметр максимальной температуры находится на отметке 250 градусов. Клеммная коробка в указанной конфигурации отсутствует. Выводов производителем предусмотрено два. Проблемы с окислением металла возникают довольно редко, поскольку герметизация используется с порошком. Изоляция в данном случае имеется надежная.

Термопреобразователь ТСП-0196-06

Термопреобразователь этого типа является довольно сильно востребованным на производстве плавких металлов. В данном случае защитная арматура предусмотрена 15Х. Непосредственно допуск по ГОСТу 6651 модель имеет серии В. Минимальная температура среды равняется -30 градусов. Отдельного внимания заслуживает высокий параметр чувствительности. Однако следует отметить, что при температуре свыше 0 градусов погрешность термопреобразователя равняется 0.022 градуса.

Длина монтажной части модели составляет только 60 мм. Показатель тепловой инерции находится на отметке в 12 с. Максимальная допустимая температура среды, при которой прибор может использоваться, равняется 240 градусов. Клеммная головка у данного термопреобразователя предусмотрена.

fb.ru

Термопреобразователи сопротивлений: описание и принцип работы

Чтобы измерить температуру многие специалисты используют термопреобразователи, термометры расширения, термоэлектрические преобразователи и приборы. Иногда в дистанционных системах передачи показаний с термопреобразователями сопротивления и термоэлектропреобразователями также могут использовать и вторичные приборы.

Ко вторичным приборам можно отнести: логометры, автоматические мосты, а также потенциометры. Термометры расширения также могут служить для расширения температуры в помещениях наружного воздуха.

Чувствительный элемент термопреобразователя

Чувствительный элемент преобразователя – это баллон с жидкостью при нагревании которого жидкость будет расширяться и ее столбик поднимется в отсчетном устройстве. Положение определенного конца столбика будет соответствовать температуре среды. Термопреобразователи сопротивления на сегодняшний день применяют в системах, где может потребоваться измерять высокие температуры и передавать все показания в дистанционном порядке. Принцип работы подобных устройств достаточно простой. Он будет основан на свойстве разнообразных металлов изменять свое сопротивление во время изменения температуры. У нас вы также можете прочесть про обустройство правильного заземления.

Чувствительные элементы чаще всего выполнены из платины или меди. Платиновую или медную проволоку необходимо наматывать на каркас. Размеры каркаса в зависимости от конструкции может быть от 60 до 100 мм. Каркас вместе с чувствительным элементом будут помещать в специальный корпус защитной арматуры. Его чаще всего выполняют из нержавеющей стали.

На технологических трубопроводах специальный преобразователь будут вставлять в гнездо, которое в дальнейшем будут укреплять с помощью штуцера. Монтажная длина преобразователей может составлять от 10 до 3150 мм, а диаметр защитной арматуры от 10 до 300 мм.

Статистические характеристики термопреобразователя

На сегодняшний день статистические характеристики термопреобразователя считаются стандартизированы. Они будут выражать зависимость сопротивления чувствительного элемента от измеряемой температуры. Характеристика может обозначаться 1П, 100П, 10м, 100м и прочие значения. Числа будут обозначать сопротивление чувствительного элемента, а буква материал, из которого оно выполнено. В зависимости от точности измерения преобразователи могут иметь пять классов. Их обозначение происходит с помощью римских цифр. У нас вы также можете прочесть про уличные розетки.

Платиновые термопреобразователи сопротивления применяют для измерения температуры в диапазоне от -260 до +1100, а медные для измерения температуры от -200 до +200. Применение преобразователей считается ограничено из-за сравнительно низкой максимальной температуры. Термоэлектропреобразователи более популярны, так как их можно будет использовать для измерения температуры до 1800 градусов.

Сейчас в промышленности могут использовать термопреобразователи из следующих сплавов:

  1. Хромель-копель (ХК).
  2. Хромель-алюмель (ХА).
  3. Платинородий-платина (ПП).
  4. Платинородий-платинородий (ПР).

Каждый тип продукции может иметь свой собственный диапазон температур. Термоэлектропреобразователь будет иметь подобную конструкцию с термопреобразователем. Чувствительный элемент этого изделия будет помещаться в специальный корпус и представлять собою спай термоэлектродов, которые будут припаяны к серебряному диску. Затем термоэлектроды будут выводиться через каналы изолирующих бус на зажимы головки. В дальнейшем термоэлектропреобразователь будут крепить с помощью специальных штуцеров и фланцев.

Сложность применения подобных изделий будет заключаться в том, что необходимо стабилизировать температуру их свободных концов. Если температура холодных концов будет изменяться, а температура погружения горячего конца останется неизменной, тогда значения также будут изменяться.

На данный момент для каждого типа термоэлектропреобразователя устанавливается определенная марка компенсационных проводов. При подключении холодных концов к компенсационным проводам между каждым термоэлектродом будет образовываться термопара. Материалы компенсационных проводов необходимо подбирать таким образом, чтобы для каждой термопары они были равны между собой и включены встречно. Во вторичном приборе будут устанавливать специальное устройство, которое сможет автоматически вносить поправки в значение т.э.д.с. в зависимости от температуры.

Манометрические термометры могут применять для измерения температуры в зонах аппаратов. Принцип их действия считается достаточно простым, и он будет основан на зависимости между температурой и давлением жидкости при постоянном объеме. В дальнейшем измерительную систему будут заполнять с помощью газа.

Термобаллон будут погружать в специальную среду, температуру которой будут измерять. Термобаллон соединяются с манометром с помощью капилляра. Во время измерения температуры будет изменяться давление, которое заполнит систему жидкости или газа. Затем через капилляр давление будет подводиться к пружине, припаянной к корпусу. При повышении температуры давление увеличивается и под воздействием раскручивается манометрическая пружина. Когда давление будет уменьшаться она закручивается. Через тягу перемещение конца пружины будет передаваться на трибко-секторный механизм. На ось трибки будет насаживаться стрелка, которая перемешается по шкале измеряемого давления.

Теперь вы точно знаете устройство термопреобразователя и приборов температуры. Надеемся, что эта информация была полезной и интересной.

Читайте также: принцип работы термопары.

vse-elektrichestvo.ru

Добавить комментарий