Допустимое напряжение в сети – Максимально допустимые отклонения напряжения сети 220в

Содержание

Допустимое отклонение напряжения по ГОСТ: допустимые значения

При проектировании электроприборов, в том числе и бытовой техники, учитываются номинальные характеристики сети, от которой они будут работать. Но в системах электроснабжения могут происходить процессы, вызывающие отклонения от номинальных параметров. Допустимое отклонение напряжения в сети, частоты, а также других характеристик, регулируется требованиями ГОСТ 13109-97 (международный стандарт, принятый в России, Республике Беларусь, Украине и в большинстве других стран СНГ). Приведем информацию о допустимых нормах отклонений и вызывающих их причинах.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1.
    Пример устоявшегося отклонения и колебания напряжения
  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд.
    Примеры перенапряжения и провала (А), бросков (В)
  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями. Пример нарушения синусоидальности напряжения
  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.

Основные причины возникновения отклонения напряжения в сети

Теперь рассмотрим, что могло вызвать изменение характеристик сети:

  • Установившиеся отклонения напряжения связывают со следующими причинами:
  1. Увеличение величины нагрузки из-за подключения одного или нескольких мощных потребителей. Характерный пример – сезонное увеличение нагрузки на энергосистемы ввиду подключения обогревательного оборудования, а также суточные пики.
  2. Увеличение числа потребителей без модернизации энергосистемы.
  3. Обрыв или недостаточное качество контакта нулевого кабеля в трехфазных системах.

При ситуациях, описанных в первом пункте, поставщик нормализует напряжение, используя специальные средства регулирования. В остальных случаях производятся ремонтные работы.

  • Причина перепадов напряжения связана с потребителями электрической энергии, с резко изменяющейся нагрузкой (как правило, при этом изменяется и реактивная мощность). В качестве примера можно привести металлургические предприятия, оборудованные дуговыми печами. Подобный эффект можно наблюдать при работе сварочного электрооборудования или поршневых компрессорных установок.
  • Причины минимального напряжения (провалы) в большинстве случаев связаны с КЗ, которые могут возникнуть в сети дома, на линиях ввода или ЛЭП. Длительность провалов варьируется от миллисекунд до секунд, при этом напряжение может уменьшаться до 90% от нормы. Наиболее чувствительна к таким изменениям электроника, нормализовать ее работу можно при помощи ИБП.
  • Возникновение импульсных напряжений может быть вызвано коммутационными процессами, ударом молнии в ВЛ, а также другими причинами. При этом величина импульса может многократно превышать стандартное напряжение в квартире по ГОСТу. Естественно, что существенное увеличение максимальных значений этого параметра приведет к выходу из строя подключенного к сети оборудования, чтобы не допустить этого, следует использовать ограничитель перенапряжения. Принцип работы этого защитного устройства и схему установки можно найти на нашем сайте. Конструкция ограничителя перенапряжения (ОПН)
  • При кратковременных перенапряжениях уровень отклонений значительно ниже, чем при бросках, но, тем не менее, это может стать причиной выхода из строя оборудования, включенного в розетки. ОПН в этом случае не спасет, но поможет реле напряжения, которое произведет защитное отключение и после нормализации ситуации восстановит подключение. Пределы изменения срабатывания (диапазон регулирования) можно задать самостоятельно или использовать настройки по умолчанию. Что касается причин, вызывающих перенапряжение, то они связаны с коммутационными процессами и КЗ.
  • Несимметрия происходит вследствие перекоса нагрузки между фазами. Ситуация исправляется путем транспозиции питающих линий.
  • Нарушение синусоидальности возникает в тех случаях, когда к энергосистеме подключается мощное оборудование, для которого характерна нелинейная ВАХ. В качестве такового можно привести промышленные преобразователи напряжения с тиристорными элементами.
  • Частота сети напрямую связана с равновесием активных мощностей источника и потребителя. Если происходит дисбаланс, связанный с недостаточной мощностью генераторов, наблюдается снижение частоты в энергосистеме до тех пор, пока не будет установлено новое равновесие. Соответственно, при избыточных мощностях, происходит обратный процесс, вызывающий повышение частоты.

Последствия отклонения от стандартов

Отклонение от номинальных напряжений может вызвать много нежелательных последствий, начиная от сбоев в работе бытовой техники и заканчивая нарушениями производственных техпроцессов и созданием аварийных ситуаций. Приведем несколько примеров:

  • Долгосрочные отклонения напряжения сверх установленной нормы приводят к снижению срока эксплуатации электрооборудования.
  • Броски с большой вероятностью могут вывести из строя электронные приборы и другую технику, подключенную к сети.
  • При провалах происходят сбои в работе вычислительных мощностей, что увеличивает риски потери информации.
  • Перекос фаз приводит к критическому повышению напряжения, что вызовет, в лучшем случае, срабатывание защиты в оборудовании, а в худшем – полностью выведет его из строя.
  • Изменение частоты моментально отразится на скорости вращения асинхронных двигателей, а также приведет к снижению активной мощности. Помимо отклонения приведут к изменению ЭДС генераторов, что вызовет лавинный процесс.

Мы привели только несколько примеров, но и их вполне достаточно, чтобы стало понятно насколько важно придерживаться норм, указанных в настоящих стандартах и ПУЭ.

www.asutpp.ru

Отклонение напряжения в сети по ГОСТ – допустимые значения

Несоответствие параметров электрической сети требуемым параметрам качества электроэнергии, установленных ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения», негативно влияет на работу электрооборудования. В быту чаще всего это отражается на сроке службы лампочек (быстрее перегорают), а также работе бытовой техники, в частности, холодильников, телевизоров, микроволновых печей. В этой статье мы рассмотрим допустимое и предельное отклонение напряжения в сети по ГОСТ, а также причины возникновения такой проблемы.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем, ГОСТ 32144-2013, согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Подведя итог, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

samelectrik.ru

Что делать, если напряжение электропитания в сети выше или ниже нормы

Отношения по предоставлению коммунальных услуг собственникам и пользователям помещений в многоквартирных домах, собственникам и пользователям жилых домов, в том числе отношения между исполнителями и потребителями коммунальных услуг регулируются «Правилами предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» (утв. постановлением Правительства РФ от 06.05.2011 № 354) (далее Правила). Указанные Правила устанавливают порядок контроля качества предоставления коммунальных услуг, порядок изменения размера платы за коммунальные услуги при предоставлении коммунальных услуг ненадлежащего качества, а также регламентируют вопросы, связанные с наступлением ответственности исполнителей и потребителей коммунальных услуг.

Коммунальные услуги – это осуществление деятельности исполнителя по подаче потребителям любого коммунального ресурса в отдельности или 2 и более из них в любом сочетании с целью обеспечения благоприятных и безопасных условий использования жилых, нежилых помещений, общего имущества в многоквартирном доме.

Электрическая энергия является одним из видов коммунальных ресурсов.

В соответствии с пп. «д» п. 3 Правил качество предоставляемых коммунальных услуг должно соответствовать требованиям, приведенным в приложении № 1 Правилам.

В п. 10 приложения №1 к Правилам указано, что одним из требований к качеству энергоснабжения является постоянное соответствие напряжения и частоты электрического тока требованиям законодательства РФ о техническом регулировании.

В соответствии с п. 4.2.2  ГОСТ  32144-2013 в электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В. При этом положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.

Таким образом, предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения: для сети 220 В – от 198 до 242 В.

В случае, если напряжение в сети потребителя отличается от данных значений, можно говорить о том, что качество коммунальной услуги по электроснабжению является ненадлежащим.

В Правилах прописан порядок установления факта предоставления коммунальной услуги ненадлежащего качества. Если вы обнаружили, что предоставляемая коммунальная услуга имеет ненадлежащее качество, то об этом нужно сообщить в аварийно-диспетчерскую службу исполнителя (письменно или устно, в том числе по телефону). Запишите номер заявки. Если причины нарушения качества коммунальной услуги неизвестны, то с потребителем должна быть согласована дата и время проведения проверки факта нарушения качества коммунальной услуги. Если с потребителем не согласовано иное время, то проверка назначается не позднее 2 часов с момента подачи заявки потребителем. По окончании проверки составляется акт, один экземпляр которого должен быть выдан потребителю. Если факт нарушения качества коммунальной услуги в ходе проведенной проверки подтвердился, то дата и время обращения потребителя в аварийную службу исполнителя будет считаться началом периода, в течение которого считается, что коммунальная услуга предоставляется с нарушениями качества. Период нарушения качества коммунальной услуги считается оконченным, например, с момента установления исполнителем факта возобновления предоставления коммунальной услуги надлежащего качества всем потребителям либо с момента сообщения потребителем исполнителю о возобновлении предоставления ему коммунальной услуги надлежащего качества. Если установлено, что качество предоставляемой электрической энергии было ненадлежащим, то размер платы за  каждый час снабжения электрической энергией ненадлежащего качества суммарно в течение расчетного периода (месяца) снижается на 0,15 процента размера платы, определенного за такой расчетный период.

Следует знать, что исполнитель обязан выполнить требование об устранении недостатков в разумный срок, назначенный потребителем (ст. 30 Закона о защите прав потребителей). Для этого потребителю лучше оформить свое требование в виде письменного заявления, подать это заявление исполнителю. Второй экземпляр такого заявления с распиской в получении и датой нужно оставить у себя.  

В соответствии с положениями ст. 13 Закона РФ «О защите прав потребителей» за нарушение прав потребителей исполнитель несет ответственность, предусмотренную законом или договором. Если иное не установлено законом, убытки, причиненные потребителю, подлежат возмещению в полной сумме сверх неустойки (пени), установленной законом или договором. Уплата неустойки (пени) и возмещение убытков не освобождают исполнителя от исполнения возложенных на него обязательств в натуре перед потребителем.

В соответствии с пп. «е» п. 33 Правил потребитель вправе требовать от исполнителя возмещения убытков и вреда, причиненного жизни, здоровью или имуществу потребителя вследствие предоставления коммунальных услуг ненадлежащего качества, а также компенсации морального вреда в соответствии с законодательством Российской Федерации.

Если в результате предоставления электрической энергии вышла из строя бытовая техника, потребитель вправе требовать возмещения причиненных убытков (стоимость восстановительного ремонта или стоимость бытовой техники).

С требованиями о предоставлении электрической энергии надлежащего качества и возмещении убытков следует обращаться к той организации, которая поставила ему электроэнергию нестандартного качества и кому он платит за потребленную энергию, т.е. на чей счет поступают денежные средства. Обращение лучше всего составить в письменном виде в виде претензии.

 При  отсутствии  реакции  на претензию и требование добровольного возмещения убытков пострадавшим потребителям  следует  обращаться в суд, приложив к иску  все  имеющие доказательства (например, акт  проверки качества электроэнергии,  заключение   специализированной   сервисной  службы   или   экспертной  организации  о   причинах выхода  из строя техники). 

В соответствии с п. 2 ст. 17 Закона РФ «О защите прав потребителей» иски о защите прав потребителей могут быть предъявлены по выбору истца в суд по месту:

нахождения организации, а если ответчиком является индивидуальный предприниматель, — его жительства;

жительства или пребывания истца;

заключения или исполнения договора.

Если иск к организации вытекает из деятельности ее филиала или представительства, он может быть предъявлен в суд по месту нахождения ее филиала или представительства.

Потребители, иные истцы по искам, связанным с нарушением прав потребителей, освобождаются от уплаты государственной пошлины в соответствии с законодательством Российской Федерации о налогах и сборах.

Важно знать, что при удовлетворении судом требований потребителя, установленных законом, суд взыскивает с исполнителя в пользу потребителя за несоблюдение в добровольном порядке удовлетворения требований потребителя штраф в размере пятьдесят процентов от суммы, присужденной судом в пользу потребителя (п. 6 ст. 13 Закона РФ «О защите прав потребителей»).

 

13.rospotrebnadzor.ru

Номинальное напряжение электрических сетей: допустимые отклонения


Скачки напряжения в электрической сети жилого дома быстрее всего закономерность, чем неожиданность. Но правильно необходимо сказать не скачки, а отклонение от номинального напряжения электрических сетей от ГОСТ. В Российской Федерации номинальное напряжение электрической сети для бытовых потребителей должно быть:

δUyнор = ± 5 % и δUyпред= ± 10 % , где

δUyнор – номинальное напряжение в однофазной сети, в России с начала 2 000-х годов равняется 230 В, для трехфазной 380 В

± 5 % —  отклонение от 230 В (380) в нормальном режиме

δUyпред= ± 10 % — отклонение от номинального в послеаварийном режиме

Хотя диапазон допустимого напряжения по старому ГОСТ считается 198 — 242 В, это  ± 10 % от величины 220 В.

Именно на номинальное напряжение рассчитаны электробытовые приборы. Если оно превышает заданные параметры, то электроприборы выходят из строя. В первую очередь это телефоны с определителем номера,  холодильник, во многих случаях телевизоры. Пониженное напряжение так же отрицательно влияет на электробытовые приборы, в частности на холодильник (тяжелый пуск компрессора).

Ответственность за качество напряжения несет энергоснабжающая организация. В многоквартирном доме это обслуживающая фирма (ЖКХ, ТСЖ). Но доказать что электроприборы вышли по их вине будет довольно сложно.

Основные причины отклонения от номинального перенапряжения в многоквартирном доме

Много жилых домов проектировалось до середины 90 – х годов прошлого века без учета сегодняшних реалий и в первую очередь электроснабжение. В то время не учитывалось микроволновая печь, второй холодильник, телевизор, компьютер и так далее. Сегодня это атрибуты обыкновенной квартиры. Но электрическая проводка осталась без изменений. По этой причине на электрическую сеть воздействует увеличенная нагрузка, и она не выдерживает.

При прохождении по кабелю рабочего тока больше, чем его номинальный, он начинает греться. Как мы знаем из школьных курсов Физики, при нагревании материал расширяется. Алюминиевая или медная жила кабеля не исключение. Когда вечером люди с работы они включают электробытовые приборы, это тем самым влияет на кабель, он расширяется, а потом сужается, контакты в месте соединения расслабляются или вообще могут отгореть если они плохо сделаны.

Основная причина перенапряжения в многоквартирных домах это ослабление нулевого рабочего проводника (ноль) или его отгорание в результате перегрузки или несвоевременного проведения ППР (планово-предупредительный ремонт).

Если нулевой проводник отгорел в РЩ (распределительный щит) в жилом доме, то отклонение от номинального будет по всему дому. Если в этажном щите на первом этаже в подъезде, то от него и выше по всем квартирам. То есть перенапряжение будет в квартирах от места отгорания нулевого проводника. Величина может колебаться от 140 В до 360 В, это зависит от нагрузки, которая включена в квартирах.

Отклонение от номинального напряжения в частном секторе

  • Отгорание нулевого рабочего проводника в трансформаторной подстанции
  • Несимметричная нагрузка по линии электропередач. В основном по улице проходит 3 фазы и энергетики стараются равномерно распределить нагрузку по фазам. Очень часто бывает, что это было сделано давно и не соответствует действительности. В итоге получается, что одна фаза перегружена и происходит падение напряжения, может 190 В или 180В, но тем не менее это не соответствует норме.
  • Сварочные работы у соседа могут повлиять на величину напряжения
  • Удар молнии

Справочная информация. Если дом находится вблизи трансформаторной подстанции, то величина напряжения может быть близка к 230 В и больше, но это в пределах нормы. Это специально делают энергетики, что бы в конце линии не было сильного падения напряжения.

Запомните! Коммутационно-защитная аппаратура (пакетный переключатель, автоматический выключатель, УЗО) не защищает электрическую сеть от перепадов напряжения.

Защита бытовой электрической сети

Для защиты электробытовых приборов от возможного перенапряжения на рынке существует большой выбор. Это реле от перенапряжения РН – 111, РН – 113, огромное количество стабилизаторов.  Они устанавливаются как на весь дом или квартиру, так и на отдельные электрические приборы. Для защиты от импульсных перенапряжений (молния) в частном доме рекомендуется установить УЗИП.

Для энергоснабжающей организации необходимо четкое соблюдение ППР. В жилых домах электромонтер должен постоянно проводить осмотр нулевых контактов и своевременно их поджимать. Там где к этому относятся не нужным образом, возможность отгорания нулевого проводника существенно увеличивается.

stroymasterok.com

Показатели качества электроэнергии

Содержание:

Качество электроэнергии, поставляемое в наши дома, не всегда является удовлетворительным. Мы часто говорим: «напряжение просело», «напряжение прыгает», «скачки напряжения», «плохое напряжение». Давайте разберемся вместе с этими понятиями. Следует отметить сразу, что точные определения отклонений от норм качества электроэнергии очень сложные. В рамках одной статьи невозможно дать полное описание требований к параметрам электричества и способам проведения официальных измерений. Тексты соответствующих ГОСТов и стандартов занимают десятки страниц и содержат многочисленные сложные формулы проведения расчётов. В данной статье мы дадим лишь общее понимание основных требований к качеству электроэнергии и простые описания часто встречающихся отклонений

Основные показатели качества электроэнергии

Список основных показателей качества электрической энергии:

  • установившееся отклонение напряжения;
  • размах изменения напряжения;
  • доза фликера;
  • коэффициент искажения синусоидальности кривой напряжения;
  • коэффициент n-ой гармонической составляющей напряжения;
  • коэффициент несимметрии напряжений по обратной последовательности;
  • коэффициент несимметрии напряжений по нулевой последовательности;
  • отклонение частоты;
  • длительность провала напряжения;
  • импульсное напряжение;
  • коэффициент временного перенапряжения.

Отклонение напряжения

Одним из параметров качества электроэнергии является отклонение напряжения.

Отклонение напряжения определяется значением установившегося отклонения напряжения. Для значения отклонения напряжения установлены нижеследующие нормы:
нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электроэнергии равны соответственно +5 и +10% от номинального напряжения электрической сети.

Значение отклонения напряжения определяется при длительности процесса более одной минуты. Нормально допустимым отклонением напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231  В). Предельно допустимым отклонением напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Для определенных выше показателей качества электроэнергии действуют следующие нормативы: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.

Колебание напряжения

Одним из параметров качества электроэнергии является колебание напряжения.

Колебания напряжения характеризуются следующими показателями:

  • размахом изменения напряжения;
  • дозой фликера.

Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты. Нормально допустимым колебанием напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231  В). Предельно допустимым колебанием напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Замечание: не следует путать требования ГОСТа к качеству электроэнергии в сети (ГОСТ Р 54149-2010 «Электрическая энергия. Совместимость технических средств электромагнитная») и ГОСТов, описывающих качество электропитания для электрических приборов (напр. ГОСТ Р 52161.2.17-2009 «Безопасность бытовых и аналогичных электрических приборов»). ГОСТ качества электроэнергии предъявляет требования по сути к поставщику электрической энергии, и именно на этот ГОСТ можно опереться, если нужно предъявить требования к поставщику при плохом электроснабжении. А требования к качеству электропитания в паспортах приборов определяют требование к приборам работать нормально в более широком диапазоне значений параметров тока. Для приборов, как правило, закладывается диапазон по напряжению от -15% до +10% от номинального.

Провал напряжения

Одним из параметров качества электроэнергии является провал напряжения. Провал напряжения определяется показателем времени провала напряжения.

Предельно допустимое значение длительности провала напряжения в электросетях напряжением до 20 000 В включительно равно 30 секунд. Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и временем срабатывания автоматики.

Провал напряжения определяется, когда напряжение падает до значения 0,9U и характеризуется длительностью процесса. Предельно допустимая длительность — 30 секунд. Глубина провала иногда может доходить и до 100%.

Перенапряжение

Временное перенапряжение определяется показателем коэффициента временного перенапряжения.

Перенапряжение характеризуется амплитудным значением напряжения больше 342 В. Верхний предел значения напряжения ГОСТом не определяется. Длительность временного перенапряжения — менее 1 секунды

Качество электроэнергии. Виды отклонений параметров электрической энергии

Для определения качества электрической энергии можно использовать следующие графические изображения. На приведенных ниже рисунках отображены следующие отклонения параметров качества электроэнергии: отклонение напряжения, колебание напряжения, перенапряжение, провал напряжения, нарушение синусоидальности напряжения, импульсы напряжения.

Как улучшить качество электроэнергии

В случае существенных отклонений параметров качества электроэнергии следует прежде всего обратиться в обслуживающую организацию, к поставщику электрической энергии. Если административные действия по улучшению качества электроэнергии не дадут результатов, тогда необходимо использовать специальные средства защиты. Для улучшения параметров качества электроэнергии мы рекомендуем использовать: средства защиты от скачков напряжения, стабилизаторы напряжения, источники бесперебойного питания.


Читайте также:

skat-ups.ru

Качество напряжения в сети: показатели, требования, контроль

  • Опубликовано: 2015-01-15 14:14:5215.01.2015
  • Здравствуйте! Перенапряжение в сети довольно распространенная аварийная ситуация. Оно может быть в сетях 330, 110, 35 кВ, это где-то далеко, но бытового потребителя интересует больше вопрос про перенапряжения в бытовой сети. Сегодня  об этом и поговорим.

     

    Параметры напряжения

    Перед тем, как вы скажите, что напряжение в вашей сети не соответствует норме и заявите свою претензию в энергоснабжающую организацию, необходимо знать эту норму. Диапазон отклонения напряжения устанавливается в нормальном режиме: δUyнор= ± 5 %, в предельно допустимом: δUyпред= ± 10 % от номинального значения.

    В России номинальное напряжение бытовой сети Uном = 230 Вольт (В), верхний диапазон составляет 242 В. Для Uном = 380 В, верхний диапазон равен 418 В. Если напряжение выше этих диапазонов и по этой причине вышли из строя электробытовые приборы, вы вправе пожаловаться в энергоснабжающую организацию.

     

    Причины перепадов напряжения в частном секторе

    Если потребитель живет в собственном доме, то самыми распространенными причинами ухудшения качества напряжения являются: повреждение линии электропередач, короткое замыкание на землю, отгорание нулевого проводника в трансформаторной подстанции (ТП) и молния.

    Очень часто бывает так, что напряжение в сети намного ниже 230 В и лампочки очень тускло горят. Одна из причин, это падение напряжения по линии. Чем больше на линии подключено домов и тем самым нагрузки, тем меньше напряжение будет в отдаленных от ТП домов.

    К примеру, в начале улицы стоит трансформаторная подстанция. В первых домах от ТП напряжение может быть 235 В, а в последних 195 В, что по правилам допустимо. Чтобы хоть как то уменьшить нагрузку на линию, энергетики разгружают ее путем распределение нагрузки между соседними фазами или увеличивают сечение ЛЭП (линии электропередачи). Но могут и увеличить выходное напряжение из ТП, к примеру до 240 В. Это так же плохо для первых домов, но в пределах нормы.

     

    Перенапряжение в многоквартирных домах

    В последнее время перенапряжение в многоквартирных домах, построенных до начала 90-х годов, стало настоящим бедствием. Когда эти дома строились, в проектную нагрузку не вносились микроволновые печи, холодильники (два), компьютеры, домашние солярии и т.д.

    Но, тем не менее, потребители пользуются этими благами цивилизации. Что в итоге происходит? В электроэнергетике есть понятие, вечерние и утренние максимумы нагрузки. Именно в это время люди идут на работу, готовят, включают много электроприборов в общем.

    По проводам и кабелям протекает рабочий ток который больше длительно допустимых токов этих проводов и кабелей, соответственно они греются. Потом охлаждается и заново. В итоге происходит ослабление контактов или отгорание нулевого проводника.

    Если в нормальном режиме напряжение между фазным и нулевым проводником 230 В, то в данном случае нулевой проводник отсутствует и напряжение будет между фазами, т.е. 380 В. В итоге напряжение «гуляет» по стояку. Его величина зависит от включенной в сеть нагрузки и может быть в диапазоне 140 – 380 В от места отгорания нулевого проводника.

     

    Защита от перенапряжения

    Необходимо знать, что установленные в этажном щитке устройства защитного отключения (УЗО), дифавтоматы или простые автоматические выключатели, не защищают от перенапряжения, а только от перегрузки, токов короткого замыкания и поражения электрическим током.

    По этой причине, для защиты бытовой техники, необходимо установить реле от перенапряжения в этажном щитке или стабилизатор напряжения в квартире. Для защиты от перенапряжения в частных домах, в случае удара молнии, рекомендуется монтировать в водное устройство дома устройства защиты от импульсных напряжений УЗИП.

    С уважением, Николай Стороженко

    elektrobiz.ru

    Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

    Стандарт нормирует допустимые отклонения напряжения на вводах ЭП. Существует ряд мощных ЭП, присоединенных непосредственно к сетям 6–20 кВ (в основном, СД), однако основная масса ЭП получает питание от сетей 0,4 кВ. Поэтому возможности РН в этих сетях имеют первостепенное значение. Трансформаторы 35–220/6–20 кВ имеют устройства РПН, позволяющие регулировать напряжение на шинах 6–20 кВ по заданному закону. При этом для компенсации потерь напряжения в линиях 6–20 кВ наиболее 313 высокое напряжение на шинах 6–20 кВ трансформатора должно поддерживаться в режиме больших нагрузок и наиболее низкое – в режиме малых нагрузок.

    Распределительные трансформаторы 6–20/0,4 кВ кроме номинального ответвления имеют четыре регулировочных ответвления с количеством витков первичной обмотки, уменьшенным на 2,5 и 5 % и увеличенным на те же величины, что позволяет изменять коэффициент трансформации Kт . Однако для изменения регулировочного ответвления необходимо отключить РТ от сети, поэтому такие изменения могут делаться лишь периодически (например, посезонно), а в течение суточного изменения нагрузок ответвления остаются постоянными.

    Изменение напряжения на шинах 0,4 кВ трансформатора, происходящее при изменении ответвления, зависит от рабочего напряжения на шинах 6–20 кВ – U1 . В табл. 8.6 приведены коэффициенты трансформации и относительные добавки напряжения ∆Ет на шинах 0,4 кВ, соответствующие указанным ответвлениям при разных напряжениях на шинах 6–20 кВ.

    Таблица 8.6

    Регулировочные характеристики РТ 6–20/0,4 кВ

     

    До 1992 г. в России стандартным напряжением низковольтных сетей считалось напряжение 220/380 В, поэтому расчетные значения добавок напряжения ∆Ет по отношению к этому напряжению были на 5 % выше и составляли от 0 до +10 %. В настоящее время в соответствии с международными стандартами установлено напряжение 230/400 В (прил. 8).

    Так как значения ∆Ет незначительно изменяются в широком диапазоне изменения U1 , в практических расчетах часто используют их расчетные значения – округленные величины, соответствующие изменению числа витков первичной обмотки трансформатора. Для проведения более точных расчетов отклонений напряжения на шинах 0,4 кВ при известном значении U1 необходимо пользоваться непосредственно коэффициентами трансформации.

    Методы расчета закона РН на шинах 6–20 кВ ЦП и выбора регулировочных ответвлений РТ 6–20/0,4 кВ рассмотрим на примере условной схемы линии 6–20 кВ, приведенной на рис. 8.19, а. В режиме максимальной нагрузки напряжение в линии снижается по мере удаления от ЦП. Его снижение на шинах 0,4 кВ РТ показано штриховой линией на рис. 8.19, б. РТ имеют пять регулировочных ответвлений, позволяющих изменять напряжение с шагом 2,5 %.

    В линиях 0,4 кВ необходимо поддерживать напряжение, обеспечивающее допустимые отклонения ± 5 % у всех ЭП, присоединенных к линии. При этом у ближайшего ЭП (А1 ) необходимо поддерживать отклонение напряжения, максимально близкое к +5 %, чтобы у удаленного ЭП (Б1 ) оно не вышло за нижний допустимый предел –5 %. Поэтому на шинах ЦП в режиме максимальной нагрузки необходимо поддерживать отклонение напряжения выше +5 % на величину потерь напряжения от шин ЦП до ближайшего ЭП сети 0,4 кВ, %:

    На этом РТ и других, находящихся в зоне потерь напряжения от ∆U с.б до (∆U с.б + 2,5) % устанавливают первое рабочее ответвление с ∆Ет = –5 %, в зоне потерь напряжения от (∆U с.б + 2,5) % до (∆U с.б + 5) % – второе рабочее ответвление, и т. д. В результате эпюра напряжения на шинах 0,4 кВ РТ имеет вид пилообразной линии 1 на рис. 8.19, б.

    Напряжение у ближайших ЭП, присоединенных к РТ, находящихся в начале каждой зоны, поддерживается близким к +5 %. Допустимые потери напряжения в линиях 0,4 кВ могут достигать 10 % и при этом отклонение напряжения у удаленных ЭП не выйдет за –5 %. В конце зоны отклонение напряжения у ближайшего ЭП уже не может превысить +2,5 %, поэтому в этих линиях 0,4 кВ допустимые потери напряжения не должны превышать 7,5 %. Так как в течение эксплуатации потери напряжения в режиме максимальной нагрузки сети изменяются, приходится периодически изменять и ответвления РТ. При этом конкретный РТ может попадать в различные места своей и смежной зоны. В связи с этим допустимые потери напряжения в линиях 0,4 кВ при их проектировании не должны

    Рис. 8.19. Упрощенная схема линии 10 кВ и эпюры напряжения

    превышать 7,5 %. Эпюра напряжения у удаленных ЭП (Б1 – БN + 1) отражается пилообразной линией 2.

    В режиме минимальной суточной нагрузки потери напряжения во всех элементах сети снижаются, а рабочие ответвления РТ остаются прежними. При неизменном напряжении в ЦП отклонение напряжения на шинах 0,4 кВ РТ будет повышаться по мере удаления от ЦП. Для того, чтобы привести напряжение у ЭП АN (ближайший ЭП в сети 0,4 кВ РТ, присоединенного в точке Д, находящейся в начале зоны последнего ответвления) к +5 %, необходимо снизить напряжение в ЦП до δU ЦП (рис. 8.19, в). Диапазон dр.н = δU ЦП – δU ЦП называют диапазоном РН в ЦП; регулирование, при котором наиболее высокое напряжение поддерживается в режиме максимальной суточной нагрузки, а наименьшее – в режиме минимальной нагрузки, называют встречным РН.

    Нагрузки РТ могут иметь различные по форме графики. Наряду с коммунально-бытовой нагрузкой с ярко выраженным вечерним максимумом от сети питаются предприятия, максимальная нагрузка которых приходится на дневные часы. Потери напряжения в линиях 0,4 кВ РТ, нагрузка которых в режиме максимальной нагрузки сети не максимальна, снижаются. Напряжение у удаленных ЭП таких РТ отражается эпюрой 3 на рис. 8.19, б; при этом возникает запас относительно уровня –5 %. В режиме же малой суммарной нагрузки сети, когда напряжение в ЦП приходится снижать по условиям основной массы потребителей, нагрузки таких РТ возрастают, и эпюра напряжения у удаленных ЭП этих РТ имеет вид 3 на рис. 8.19, в. При этом отклонение напряжения у ряда ЭП выходит за предел –5 %. В наилучшем положении оказываются РТ, подключенные к точке Д, напряжения на вводах которых поддерживаются постоянными во всех режимах.

    Встречное РН осуществляется по графику нагрузки ЦП, который формируется всеми потребителями. Поэтому при разнородных графиках нагрузки РТ закон регулирования в большей или меньшей степени не соответствует ни одному потребителю. Степень несоответствия для конкретного потребителя будет тем больше, чем меньше доля потребителей с подобным графиком в общей нагрузке и чем более отличен их график от графика основной массы потребителей.

    С позиции распределения неоднородных нагрузок сети 6–20 кВ можно разбить на три группы:

    • сети с относительно однородными нагрузками РТ;
    • сети с неоднородными нагрузками линий, отходящих от ЦП (межлинейная неоднородность), при этом внутри каждой линии нагрузки однородны;
    • сети с неоднородными нагрузками, присоединенными к общей линии 6–20 кВ (внутрилинейная неоднородность).

     

    В сетях с однородными нагрузками РТ допустимые отклонения напряжения у всех ЭП, присоединенных к сетям 0,4 кВ, могут быть обеспечены с помощью РН в ЦП и соответствующего выбора рабочих ответвлений РТ. Единственным условием является непревышение допустимых потерь напряжения в сетях 6–20 кВ (сети среднего напряжения) и 0,4 кВ (сети низкого напряжения). В сети среднего напряжения они не должны превышать 12,5 % (10 % – максимальные возможности компенсации потерь с помощью ответвлений РТ плюс 2,5 % – допустимые потери в последней зоне за точкой Д, рис. 8.19), а в сетях низкого напряжения – 7,5 %.

    В сетях со значительной межлинейной неоднородностью обеспечить допустимые режимы напряжения на шинах 380 В всех РТ с помощью РН в ЦП нельзя. Единственным способом здесь является выделение наиболее неоднородной линии на отдельное регулирующее устройство (вольтодобавочный трансформатор). Если в ЦП находятся два трансформатора с РПН и по условиям надежности электроснабжения допустима их раздельная работа по стороне 6–20 кВ, целесообразно разделить линии на две группы с относительно однородными нагрузками и подключить их к разным шинам.

    Для улучшения режима напряжения у неоднородных потребителей в линиях с внутрилинейной неоднородностью необходимо использовать средства местного регулирования, в качестве которых применяют конденсаторные установки. Подключение таких установок снижает потери напряжения и соответственно повышает его уровень при том же рабочем ответвлении РТ. Степень повышения зависит от реактивного сопротивления сети по отношению к точке подключения. Регулирующие эффекты конденсаторов мощностью 100 квар на трансформаторах 6–20/0,4 кВ и линиях 0,4 кВ приведены в табл. 8.7.

    Таблица 8.7

    Регулирующие эффекты конденсаторных установок для различных элементов сети

    Регулирующие эффекты на участках сетей 6–20 кВ практически незначимы. Устанавливать конденсаторные установки целесообразно в глубине сети 0,4 кВ, особенно в случае ВЛ 0,4 кВ. Здесь может оказаться достаточной небольшая мощность установки (в зарубежных странах используются конденсаторы наружной установки на опорах ВЛ). Такие устройства могут быть установлены в линиях с неоднородными нагрузками, подключенных к РТ и расположенных близко к ЦП, или линиях с однородными нагрузками, подключенных к РТ и расположенных в зоне последнего ответвления.

    Напряжение в линиях с неоднородными нагрузками, подключенных к РТ и расположенных близко к ЦП, повышается. В первом случае это происходит за счет снижения потерь напряжения в самих линиях 0,4 кВ (табл. 8.7) – при этом поднимается линия 3 на рис. 8.19, в, – а во втором случае можно отказаться от установки следующего ответвления на РТ в последней зоне (штриховая линия на рис. 8.19, г), обеспечив повышение напряжения в ЦП в режиме малой нагрузки сети.

    Дискретность ступеней регулирования трансформатора в ЦП оказывает существенное влияние на режимы напряжения в сети. Трансформаторы с РПН 35 и 220 кВ имеют ступень регулирования ∆Ет = 1,5 %, а 110 кВ – 1,78 %. Поэтому при срабатывании РПН напряжение во всех точках сети скачкообразно изменяется на величину ступени. Обычно достаточно нескольких срабатываний РПН за сутки.

    На обслуживаемых подстанциях переключения могут производиться дежурным персоналом, на необслуживаемых подстанциях – дистанционными исполнительными устройствами или устройствами автоматического регулирования. Для предотвращения обратных срабатываний устанавливаемая в устройстве зона нечувствительности регулирования ε должна быть больше ступени регулирования. Чем больше разность ε – ∆Ет , тем реже срабатывает регулирующее устройство, но тем более грубым оказывается регулирование. Для обеспечения компромисса между частотой срабатывания РПН и точностью регулирования зону нечувствительности следует принимать на 0,5–0,7 % больше ступени регулирования.

    Некоторые специалисты считают, что для обеспечения нормируемых отклонений напряжения необходимо проектировать сети на допустимые потери напряжения, сниженные относительно приведенных выше величин 12,5 % и 7,5 % на величину зоны нечувствительности регулирования, то есть как минимум на 2 %. Учитывая вероятностный характер изменения напряжения и допустимость его нахождения в течение 1 ч 12 мин в сутки в зоне до ±10 %, такое условие представляется слишком жестким. Вместе с тем снижение допустимых потерь напряжения до 11,5 % и 6,5 % представляется экономически оправданным. Необходимый диапазон РН в ЦП зависит от максимальных потерь напряжения в сети 6–20 кВ, определяющих число используемых регулировочных ответвлений РТ (Nо ), и от диапазона изменения нагрузки в течение суток, характеризуемого коэффициентом kмин . Диапазон РН можно определить по формуле

    Необходимые диапазоны РН в ЦП при различных значениях потерь напряжения в сети 6–20 кВ и коэффициента kмин приведены в табл. 8.8.

    Таблица 8.8

    Диапазоны регулирования напряжения в ЦП

    Используемые в настоящее время устройства автоматического регулирования напряжения в ЦП реализуют линейный закон РН в ЦП в зависимости от токовой нагрузки ЦП. Однако линейный закон не является наилучшим, особенно при неоднородных нагрузках РТ. Оптимальный закон можно получить, рассчитав для каждого часа суток требуемые отклонения напряжения в ЦП при соответствующих каждому часу нагрузках РТ и суммарной нагрузке сети. Один из полученных таким образом законов РН показан на рис. 8.20. Расчеты показывают, что чем больше неоднородность нагрузок РТ и чем ближе к ЦП расположены РТ с неоднородными нагрузками, тем больше необходимый закон регулирования напряжения в ЦП отличается от линейного. При современном уровне развития цифровой техники создание регулятора, реализующего такие законы регулирования, не представляется слишком трудной задачей.

    Рис. 8.20. Нелинейный закон регулирования напряжения в центре питания

    Ниже (в примере 8.3) проведен подробный расчет по выбору закона РН на шинах 10 кВ ЦП фидера 10 кВ и рабочих ответвлений РТ 10/0,4 кВ. В случае если в ЦП фидеров 10 кВ установлен трансформатор 35/10 кВ без РПН, РН на его шинах 10 кВ возлагается на трансформатор 110/35 кВ с РПН. Методика расчета закона РН на шинах 35 кВ трансформатора 110/35 кВ и выбора оптимальных рабочих ответвлений трансформаторов 35/10 кВ без РПН изложена ранее в п. 6.2.5.

    Пример 8.3. На рис. 8.21 изображен фидер 10 кВ, над участками которого указаны потери напряжения в режиме наибольших нагрузок, %. Наименьшая нагрузка фидера составляет 30 % от наибольшей (kмин = 0,3). Потери напряжения в каждом РТ 10/0,4 кВ в режиме наибольших нагрузок приняты равными 1,7 %. Максимальные потери напряжения в линиях 0,4 кВ составляют 7 %. Допустимые отклонения напряжения δU+ = +5 % и δU– = –5 %. Требуется рассчитать закон РН на шинах 10 кВ ЦП.

    Решение. Потери напряжения от шин 10 кВ ЦП до шин 0,4 кВ каждого РТ в режиме наибольших нагрузок составляют:

    Максимальный уровень напряжения на шинах ЦП определяется условиями РТ 1. Для того чтобы отклонение напряжения на шинах 0,4 кВ этого РТ составляло +5 %, на шинах ЦП оно должно быть равным δU ЦП = δU+ + ∆U 1 – ∆Ет1 = 5 + 2,5 – (–5) = 12,5 %.

    Такое превышение напряжения на шинах ЦП недопустимо по условиям работы изоляции. Необходимо снизить его как минимум до 10 %. Для этого на РТ 1 придется установить не первое ответвление с ∆Ет1 = –5 %, а второе с ∆Ет2 = –2,5 %. Если на РТ 2–5 также установить второе ответвление, то отклонения напряжения на шинах 0,4 кВ РТ 1–5 составят:

    Учитывая, что ступень РН на РТ 10/0,4 кВ составляет 2,5 %, поднять напряжения к уровню +5 % с помощью установки следующего рабочего ответвления можно лишь на РТ 4 и 5 (на остальных РТ при такой установке оно будет выше +5 %). При установке на этих РТ третьего ответвления с ∆Ет3 = 0 % получим δU 4 = 10 – 6,0 – 0 = = 4,0 % и δU 5 = 10 – 6,9 – 0 = 3,1 %.

    Если в линиях 0,4 кВ РТ 3 и 5 есть небольшая потеря напряжения от шин РТ до ближайших ЭП (порядка 0,6 %), то на РТ 3 можно установить третье ответвление с ∆Ет3 = 0 %, а на РТ 5 – четвертое с ∆Ет4 = +2,5 %. Тогда на шинах 0,4 кВ обоих РТ будет +5,6 %, а у ближайших ЭП +5 %. В этом случае номера рабочих ответвлений 35–220 кВ 6–10 кВ 0,4 кВ 0,4 кВ 1 бб 1 бу Отв. 1 Отв. N Сеть 380/220 Сеть 380/220 1 уб 1 уу ∆Uл ∆Uт ∆Uт ∆Uн ∆Uн 4 3 0,8 % 2б 0,6 % 1,3 % 1,6 % 0,9 % 2у 1 2 3 4 5 322 на РТ 1–5 составят 2, 2, 3, 3, 4 с ∆Ет = –2,5; –2,5; 0; 0; +2,5 %; отклонения напряжения на шинах 0,4 кВ РТ составят:

     

    а у удаленных ЭП на 7 % меньше:

    Наиболее низкое напряжение (–3 %) наблюдается в удаленной точке сети 0,4кВ РТ 4. Оно не выйдет за предел –5%, если напряжение в ЦП будет снижено на 2 % и составит 10 – 2 = 8 %. Эта величина и является нижней границей диапазона РН в режиме наибольших нагрузок. Отклонения напряжения у всех ЭП сетей 0,4 кВ не выйдут за допустимые пределы в режиме наибольших нагрузок, если отклонение напряжения на шинах ЦП в этом режиме будет поддерживаться в диапазоне от +8 до +10 %.

    В режиме малых нагрузок сети потери напряжения уменьшатся до 30 % от потерь в режиме больших нагрузок. Отклонения напряжения на шинах РТ с учетом регулировочных ответвлений составят:

    Наиболее высокое напряжение наблюдается на шинах РТ 5, который является критичным для напряжения в ЦП в режиме малых нагрузок. Напряжение на шинах ЦП необходимо снизить на 5,43 % и поддерживать на уровне δU ЦП = 10 – 5,43 = 4,57 %.

    Отклонения напряжения на шинах РТ режиме малых нагрузок сети составят:

    а у удаленных ЭП:

    Наиболее низкое напряжение (–0,96 %) наблюдается в удаленной точке сети 0,4 кВ РТ 2. Оно не выйдет за предел –5%, если напряжение в ЦП будет снижено на 4,04 % и составит Vм1 = 4,57 – 4,04 = = 0,53 %. Эта величина и является нижней границей диапазона РН в режиме малых нагрузок.

    В результате требования к РН в ЦП формулируются следующим образом: отклонение напряжения на шинах ЦП в режиме больших нагрузок сети должно поддерживаться в диапазоне от +8 до +10 %, а в режиме малых нагрузок сети – в диапазоне от до +0,53 до +4,57 %, в промежуточных режимах – в соответствии с линейной зависимостью от нагрузки. При этом закон регулирования напряжения в ЦП представляется не одной линией, как на рис. 6.2 и 8.20, а в виде зоны отклонений напряжения (рис. 8.22).

    Следует отметить, что приведенные выше расчеты с точностью до второго знака после запятой совершенно не соответствуют точности исходных данных. Поэтому в практических задачах их можно округлять до 0,5 %.

    Рис. 8.22. Закон регулирования напряжения в центре питания сети 10 кВ

    pue8.ru

    Добавить комментарий