Напряжение в электросети: Напряжение электросети | CLAGE-РОССИЯ

Содержание

ГОСТ 29322-2014 (IEC 60038:2009) Напряжения стандартные, ГОСТ от 25 ноября 2014 года №29322-2014


ГОСТ 29322-2014

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



МКС 29.020
13.260*

91.140.5**
_____________________

* По данным официального сайта Росстандарта ОКС 29.020,

здесь и далее;
** Вероятно, ошибка оригинала. Следует читать: 91.140.50,
здесь и далее. — Примечания изготовителя базы данных.

Дата введения 2015-10-01


Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2014 г. N 70-П)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

Беларусь

Казахстан

Киргизия

Молдова

Россия

Украина

AM

BY

KZ

KG

MD

RU

UA

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

Кыргызстандарт

Молдова-Стандарт

Росстандарт

Госпотребстандарт Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 ноября 2014 г. N 1745-ст межгосударственный стандарт ГОСТ 29322-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.


5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 60038:2009* IEC standard voltages (Напряжения стандартные). При этом дополнительные и измененные положения, учитывающие потребности национальной экономики указанных выше государств, выделены в тексте курсивом, а также вертикальной линией, расположенной на полях этого текста.
________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.


Международный стандарт разработан Международной электротехнической комиссией (IEC).

Наименование настоящего стандарта изменено относительно наименования международного стандарта в связи с особенностями построения межгосударственной системы стандартизации.

Перевод с английского языка (en).

Степень соответствия — модифицированная (MOD)

6 ВЗАМЕН ГОСТ 29322-92


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты».

В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение


Настоящий стандарт устанавливает номинальные напряжения для электрических систем, сетей, цепей и оборудования переменного и постоянного тока, которые применяют в странах — членах Международной электротехнической комиссии.

Настоящий стандарт по построению, последовательности изложения требований, нумерации разделов и подразделов полностью соответствует стандарту IEC 60038:2009. По сравнению со стандартом IEC 60038:2009 настоящий стандарт дополнен обновленными ссылками на международные стандарты и определениями терминов.

Наименьшее используемое напряжение в Таблице А. 1 Приложения А настоящего стандарта определено для максимального падения напряжения между вводом в электроустановку пользователя и электрооборудованием, которое равно 4%. Такое максимальное падение напряжения в электрических цепях электроустановки было указано в ранее действовавшем стандарте [7]. В Таблице G.52.1 действующего в настоящее время стандарта [6] для электроустановок, подключаемых к электрическим сетям общего пользования, установлены иные значения максимального падения напряжения:

для электрических светильников — 3%;

для других электроприемников — 5%.

Требования в настоящем стандарте набраны прямым шрифтом, примечания набраны мелким прямым шрифтом. Обновленные ссылки, а также дополнительные и измененные положения выделены в тексте курсивом.

1 Область применения


Настоящий стандарт распространяется:

— на электрические системы переменного тока номинальным напряжением более 100 В и стандартной частотой 50 Гц или 60 Гц, используемые для передачи, распределения и потребления электроэнергии, и электрооборудование, применяемое в таких системах;

— на тяговые системы переменного и постоянного тока;

— на электрооборудование переменного тока с номинальным напряжением менее 120 В и частотой (как правило, но не только) 50 или 60 Гц, электрооборудование постоянного тока с номинальным напряжением менее 750 В. К такому оборудованию относятся батареи (из элементов или аккумуляторов), другие источники питания переменного или постоянного тока, электрическое оборудование (включая промышленное и коммуникационное) и бытовые электроприборы.

Настоящий стандарт не распространяется на напряжения, используемые для получения и передачи сигналов или при измерениях. Стандарт не распространяется на стандартные напряжения компонентов или частей, применяемых в электрических устройствах или электрооборудовании.

Настоящий стандарт устанавливает значения стандартного напряжения, которые предназначены для применения в качестве:

— предпочтительных значений для номинального напряжения электрических систем питания;

— эталонных значений для электрооборудования и проектируемых электрических систем.

Примечания

1 Две главные причины привели к значениям, установленным в настоящем стандарте:

— значения номинального напряжения (или наивысшего напряжения для электрооборудования), установленные в настоящем стандарте, главным образом основаны на историческом развитии электрических систем питания во всем мире, так как эти значения оказалось наиболее распространенными и получили всемирное признание;

— диапазоны напряжений, указанные в настоящем стандарте, были признаны самыми подходящими в качестве основы для разработки и испытания электрического оборудования и систем.

2 Однако определение надлежащих значений для испытаний, условий испытаний и критериев приемки является задачей систем стандартов и стандартов на изделия.

2 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями. Для напряжений переменного тока ниже указаны действующие значения.

2.1

номинальное напряжение системы (nominal system voltage): Соответствующее приближенное значение напряжения, применяемое для обозначения или идентификации системы.

[[1] раздел 601-01, статья 21]

2.2

наибольшее напряжение системы (исключая переходные и анормальные условия) (highest voltage of a system (excluding transient or abnormal conditions)): Наибольшее значение рабочего напряжения, которое имеет место при нормальных условиях оперирования в любое время и в любой точке электрической системы.

Примечание — Это определение исключает переходные перенапряжения, например, вследствие коммутационных оперирований, и временные колебания напряжения.

[[1] раздел 601-01, статья 23]

2.3

наименьшее напряжение системы (исключая переходные и анормальные условия) (lowest voltage of a system (excluding transient or abnormal conditions)): Наименьшее значение рабочего напряжения, которое имеет место при нормальных условиях оперирования в любое время и в любой точке электрической системы.

Примечание — Это определение исключает переходные перенапряжения, например, вследствие коммутационных оперирований, и временные колебания напряжения.


[[1] раздел 601-01, статья 24]

2.4 зажимы питания (supply terminals): Точка в передающей или распределительной электрической сети, обозначенная как таковая и определенная договором, в которой участники договора обмениваются электрической энергией.

2.5 напряжение питания (supply voltage): Напряжение между фазами или напряжение между фазой и нейтралью на зажимах питания.

Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью на зажимах питания.

2.6 диапазон напряжения питания (supply voltage range): Диапазон напряжения на зажимах питания.

2.7 используемое напряжение (utilization voltage): Напряжение между фазами или напряжение между фазой и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

2.8 диапазон используемого напряжения (utilization voltage range): Диапазон напряжения в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

Примечание — В некоторых стандартах на электрооборудование (например, в IEC 60335-1 [2] и IEC 60071 [3]), термин «диапазон напряжения» имеет другое значение.

2.9 наибольшее напряжение для электрооборудования (highest voltage for equipment): Наибольшее напряжение, для которого электрооборудование охарактеризовано относительно:

a) изоляции;

b) других характеристик, которые могут быть связаны с этим наибольшим напряжением в соответствующих рекомендациях для электрооборудования.

Примечание — Электрооборудование можно использовать только в электрических системах, имеющих наибольшее напряжение, которое меньшее или равно его наибольшему напряжению для электрооборудования.

2.10

напряжение между фазами (phase-to-phase voltage): напряжение между двумя фазными проводниками в заданной точке электрической цепи.

[[1] раздел 601-01, статья 29]

2.11

напряжение между фазой и нейтралью (phase-to-neutral voltage): напряжение между фазным и нейтральным проводниками в заданной точке электрической цепи.

[[1] раздел 601-01, статья 30]

2.12

линейный проводник (line conductor): Проводник, находящийся под напряжением при нормальных условиях и используемыи для передачи электрической энергии, но не нейтральный проводник или средний проводник.

[[4] раздел 826-14, статья 09]

2.13

нейтральный проводник (neutral conductor): Проводник, электрически присоединенный к нейтрали и используемый для передачи электрической энергии.

[[4] раздел 826-14, статья 07]

2. 14

фазный проводник (phase conductor): Линейный проводник, используемый в электрической цепи переменного тока.

[[5] пункт 20.91]

3 Стандартные напряжения

3.1 Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно


Номинальное напряжение системы переменного тока в диапазоне от 100 до 1000 В следует выбирать из значений, приведенных в Таблице 1.


Таблица 1 — Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно

Номинальное напряжение трехфазных четырехпроводных или трехпроводных систем, В

Номинальное напряжение однофазных трехпроводных систем, В

50 Гц

60 Гц

60 Гц

230

230/400


120/208

240

230/400

277/480

120/240


400/690

1000

480

347/600

600


Значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих пор продолжают применять.
Значение 400/690 В является результатом эволюции системы 380/660 В, которую завершили использовать в Европе и во многих других странах. Однако систему 380/660 В до сих пор продолжают применять.
Значение 200 или 220 В также используют в некоторых странах.
Значения 100/200 В также используют в некоторых странах в системах с частотой 50 или 60 Гц.


В Таблице 1 трехфазные четырехпроводные системы и однофазные трехпроводные системы включают однофазные электрические цепи, присоединенные к этим системам.

Меньшие значения в первой и второй колонках являются напряжениями между фазой и нейтралью, большие значения — напряжениями между фазами. Если указано одно значение, оно относится к трехфазным трехпроводным системам и устанавливает напряжение между фазами. Меньшее значение в третьей колонке является напряжением между фазой и нейтралью, большее значение — напряжение между фазными проводниками.

Напряжения, превышающие 230/400 В, предназначены для применения в тяжелой промышленности и в больших торговых предприятиях.

При нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения системы больше чем на ±10%.

Диапазон используемого напряжения зависит от изменения напряжения на зажимах питания и падения напряжения, которое может быть в потребительской электроустановке, например — в электроустановке здания. Для получения дополнительной информации см.[6]. Этот диапазон используемого напряжения следует учитывать техническим комитетам по стандартизации.

Примечание — Наибольшие и наименьшие значения напряжения на зажимах питания и на зажимах электроприемника приведены в Приложении А для информации. Они могут быть рассчитаны, как указано выше и по [6].

3.2 Тяговые системы постоянного и переменного тока


Напряжения тяговых систем постоянного или переменного тока следует выбирать из значений, приведенных в Таблице 2.


Таблица 2 — Тяговые системы постоянного и переменного тока

Напряжение, В

Номинальная частота для систем переменного тока, Гц

Наименьшее

Номинальное

Наибольшее

Системы постоянного тока

(400)

500

1000

2000

(600)

750

1500

3000

(720)

900

1800

3600

Однофазные системы переменного тока

(4750)

12000

19000

(6250)

15000

25000

(6900)

17250

27500

50 или 60

16

50 или 60

Значения, указанные в скобках, считаются непредпочтительными значениями. Эти значения не рекомендуется использовать для новых систем, сооружаемых в будущем. В частности, для однофазных систем переменного тока номинальное напряжение 6250 В следует использовать только тогда, когда местные условия не позволяют применить номинальное напряжение 25000 В.

Значения, указанные в таблице, являются значениями, принятыми Международным комитетом по оборудованию электрической тяги и техническим комитетом 9 МЭК «Электрическое оборудование и системы для железных дрог».

В некоторых европейских странах это напряжение может достигать 4000 В. Электрическое оборудование транспортных средств, участвующих в международном сообщении с этими странами, должно выдерживать это максимальное значение напряжения в течение коротких промежутков времени до 5 мин.

3.3 Системы трехфазные и электрооборудование переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно


Напряжения для трехфазной системы переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно следует выбирать из значений, приведенных в Таблице 3.


Таблица 3 — Системы трехфазные и электрооборудование переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно

Ряд I

Ряд II

Наибольшее напряжение для электрооборудования, кВ

Номинальное напряжение системы, кВ

Наибольшее напряжение для электрооборудования, кВ

Номинальное напряжение системы, кВ

3,6

3,3

3

4,40

4,16

7,2

6,6

6



12

11

10






13,2

12,47




13,97

13,2




14,52

13,8

(17,5)


(15)



24

22

20






26,4

24,94

36

33

30




36,5

34,5

40,5

35

Примечания

1 Рекомендуется, чтобы в любой стране соотношение между двумя смежными номинальными напряжениями было не менее двух.

2 В нормальной системе ряда I наибольшее и наименьшее напряжения не отличаются более чем на ±10% (приблизительно) от номинального напряжения системы. В нормальной системе ряда II наибольшее напряжение не отличается более чем на +5%, а наименьшее напряжение более чем на — 10% от номинального напряжения системы.

Эти системы обычно представляют собой трехпроводные системы, если не указано иначе. Указанные значения являются напряжениями между фазами.

Значения, указанные в скобках, считаются непредпочтительными значениями. Эти значения не рекомендуется использовать для новых систем, сооружаемых в будущем.

Эти значения не следует применять для новых систем распределения общего назначения.

Эти системы обычно представляют собой четырехпроводные системы, а указанные значения являются напряжениями между фазами. Напряжение между фазой и нейтралью равно указанному значению, деленному на 1,73.

Унификация этих значений на рассмотрении.

Значения 22,9 кВ для номинального напряжения и 24,2 или 25,8 кВ для наибольшего напряжения для электрооборудования также используют в некоторых странах.

3.4 Системы трехфазные и электрооборудование переменного тока с номинальным напряжением свыше 35 до 230 кВ включительно


Напряжения для трехфазной системы переменного тока с номинальным напряжением свыше 35 кВ до 230 кВ включительно следует выбирать из значений, приведенных в Таблице 4.


Таблица 4 — Системы трехфазные и электрооборудование переменного тока с номинальным напряжением свыше 35 до 230 кВ включительно

Наибольшее напряжение для электрооборудования, кВ

Номинальное напряжение системы, кВ

(52)

(45)

72,5

66

69

123

110

115

145

132

138

(170)

(150)

(154)

245

220

230

Значения, указанные в скобках, считаются непредпочтительными значениями. Эти значения не рекомендуется использовать для новых систем, сооружаемых в будущем. Значения являются напряжениями между фазами.



Выше приведены два ряда номинальных напряжений системы. В любой стране рекомендуется применять только один из двух рядов.

В любой стране в качестве наибольшего напряжения для электрооборудования рекомендуется применять только одно значение из следующих групп:

— 123 или 145 кВ;

— 245 или 300 кВ (см.таблицу 5) или 362 кВ (см.Таблицу 5).

3.5 Системы трехфазные переменного тока с наибольшим напряжением для электрооборудования свыше 245 кВ


Наибольшее напряжение для электрооборудования для трехфазной системы переменного тока, превышающее 245 кВ, следует выбирать из значений, приведенных в Таблице 5.


Таблица 5 — Системы трехфазные переменного тока с наибольшим напряжением для электрооборудования более 245 кВ

Наибольшее напряжение для электрооборудования, кВ

(300)

362

420

550

800

1100

1200

Значения, указанные в скобках, считаются непредпочтительными значениями. Эти значения не рекомендуется использовать для новых систем, сооружаемых в будущем. Значения являются напряжениями между фазами.
Применяют также значение 525 кВ.
Применяют также значение 765 кВ. Значения напряжения, используемые при испытаниях электрооборудования, должны быть такими, которые установила IEC для 765 кВ.



В любом географическом регионе в качестве наибольшего напряжения для электрооборудования рекомендуется применять только одно значение из следующих групп:

— 245 (см.Таблицу 4) или 300 или 362 кВ;

— 362 или 420 кВ;

— 420 или 550 кВ;

— 1100 или 1200 кВ.

Примечание — Термин «географический регион» может указать одну страну, группу стран, которые соглашаются принять один и тот же уровень напряжения, или часть очень большой страны.

3.6 Электрооборудование переменного тока с номинальным напряжением менее 120 В и постоянного тока с номинальным напряжением менее 750 В


Номинальное напряжение менее 120 и 750 В для электрооборудования соответственно переменного и постоянного тока следует выбирать из значений, приведенных в Таблице 6.

Таблица 6 — Электрооборудование переменного тока с номинальным напряжением менее 120 В и постоянного тока с номинальным напряжением менее 750 В

Постоянный ток

Переменный ток

Номинальное напряжение

Номинальное напряжение

Предпочтительное, В

Дополнительное, В

Предпочтительное, В

Дополнительное, В

2,4

3

4

4,5

5

5

6

6

7,5

9

12

12

15

15

24

24

30

36

36

40

48

48

60

60

72

80

96

100

110

110

125

220

250

440

600

Примечания

1 Поскольку напряжение элементов или аккумуляторов менее 2,4 В и выбор типа применяемого элемента или аккумулятора для различных областей использования основан на иных критериях, чем его напряжение, эти напряжения не указаны в таблице. Соответствующие технические комитеты IEC могут устанавливать типы элементов или аккумуляторов и соответствующие напряжения для конкретных применений.

2 По техническим и экономическим причинам для специфических областей применения могут потребоваться другие напряжения.

Приложение А (справочное). Наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников для систем переменного тока с номинальным напряжением от 100 до 1000 В включительно

Приложение А
(справочное)


В Таблице А.1 указаны наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников. Их можно рассчитать по данным Таблицы 1 Раздела 4 настоящего стандарта и указаниям, приведенным в [7].

Примечания

1 Значения в Таблице А.1 основаны на примечании к разделу 525 [7], в котором указано: «При отсутствии других соображений, рекомендуется, чтобы на практике падение напряжения между вводом в электроустановку пользователя и электрооборудованием было не более 4% от номинального напряжения электроустановки». Раздел 525 [7] находится на рассмотрении. В будущем значения для наименьшего используемого напряжения могут быть изменены в соответствии с пересмотром [7].

2 Стандарт [7] заменен стандартом [6], в Таблице G.52.1 Приложения G которого для электроустановок, подключаемых к электрическим сетям общего пользования, установлены следующие максимальные падения напряжения: для электрических светильников — 3%, для других электроприемников — 5%.


Таблица А.1 — Наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников для систем переменного тока с номинальным напряжением от 100 до 1000 В включительно

Системы

Номинальная частота, Гц

Напряжение

Наибольшее напряжение питания или используемое напряжение, В

Номинальное напряжение, В

Наименьшее напряжение питания, В

Наименьшее используемое напряжение, В

Трехфазные четырехпроводные или трехпроводные системы

50

253

230

207

198

253/440

230/400

207/360

198/344

440/759

400/690

360/621

344/593

1100

1000

900

860

60

132/229

120/208

108/187

103/179

264

240

216

206

253/440

230/400

207/360

198/344

305/528

277/480

249/432

238/413

528

480

432

413

382/660

347/600

312/540

298/516

660

600

540

516

Однофазные трехпроводные системы

60

132/264

120/240

108/216

103/206

Значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих пор продолжают применять.

Значение 400/690 В является результатом эволюции системы 380/660 В, которую завершили использовать в Европе и во многих других странах. Однако систему 380/660 В до сих пор продолжают применять.

Значение 200 или 220 В также используют в некоторых странах.

Значения 100/200 В также используют в некоторых странах в системах с частотой 50 или 60 Гц.

Библиография

[1]

IEC 60050-601:1985

Electrotechnical Vocabulary. Chapter 601: Generation, transmission and distribution of electricity. General

(Международный электротехнический словарь. Глава 601. Производство, передача и распределение электрической энергии. Общие понятия)

[2]

IEC 60335-1:2013

Household and similar electrical appliances. Safety. Part 1: General requirements

(Бытовые и аналогичные электрические приборы. Безопасность. Часть 1. Общие требования)

[3]

IEC 60071

Insulation co-ordination

(Координация изоляции)

[4]

IEC 60050-826:2004

International Electrotechnical Vocabulary — Part 826: Electrical installations

(Международный электротехнический словарь. Часть 826. Электрические установки)

[5]

ГОСТ 30331.1-2013

Low-voltage electrical installations. Part 1. Fundamental principles, assessment of general characteristics, definitions

(Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения)

[6]

IEC 60364-5-52:2009

Low-voltage electrical in

Какое в России напряжение в сети 220 или 230 Вольт? Или до 253 Вольт! | Электронщик Андрей

Почти все ответят на этот вопрос однозначно: в России напряжение в сети — 220 Вольт. Мы с этим родились, это мы слышим везде и всюду. Но так ли это на самом деле? Нет! Уже с 2014 года по ГОСТу сетевое напряжение в России 230 Вольт! И действительно уже много где, незаметно для нас напряжение в наших домах и квартирах составляет 230 Вольт.

Имеет ли это какое то практическое значение? И да и нет. Если мы покупаем современную электротехнику — она естественно будет иметь необходимые параметры по электропитанию.

Некоторые читатели могут вспомнить, как несколько лет назад вдруг всплыла тема, что на всех лампочках накаливания указано напряжение 230 Вольт, а в сети у всех якобы 220 Вольт и лампочки накаливания не дотягивали до указанной на них мощности. Естественно, эта проблема носила какой то непонятный смысл для бытовых потребителей и все про неё забыли.

Но есть ли действительно смысл обратить внимание на напряжение в сети. Как правило все производители электроприборов и оборудования рассчитывают параметры с учётом того, что напряжение всё равно не бывает стабильным, а может отклоняться на +-10%. Всё вроде должно работать и проблем никаких быть не должно. Ведь если прибор был рассчитан на напряжение 220 Вольт + 10% то при напряжении до 242 Вольт всё будет в пределах расчёта. Но сейчас по ГОСТу — 230 Вольт и допуск ещё +10%, а это уже 253 Вольта! То есть у нас в сети допустимое напряжение 253 Вольта! И электроприборы которые были рассчитаны на 220 Вольт уже могут не выдержать напряжения.

Из практики, азиатские производители электроприборов до сих пор делают для российского потребителя приборы которые рассчитаны на 220 Вольт. Плюс ко всему, если отечественные и мировые производители техники учитывают все допуски, которые могут быть, в сети, то безымянные азиатские производители этого не делают. В итоге даже при напряжении в сети 230 Вольт могут начаться проблемы! В первую очередь проявляется это в перегреве блоков питания и сетевых адаптеров и преждевременном выходе их из строя. Особенно опасным может оказаться повышение сетевого напряжения ещё выше. То есть по норме ГОСТа до 253 Вольт. При таком напряжении вероятность выхода из строя техники очень высока!

Так что если Вы заметили, что что-то из вашей техники стало вести себя не так. Стали выходить из строя адаптеры и блоки питания. Что то стало перегреваться, проверьте напряжение в сети! Наверняка оно стало 230 Вольт.

Скачки напряжения, 12 причин появления скачков в сети

09-03-2013

Скачки напряжения. Определения и понятия

Скачки напряжения

Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.

Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.

Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.

 

Отклонение напряжения

«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Колебание напряжения

«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Перенапряжение

«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.

Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».

С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.

Причины появления скачков напряжения

Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов

Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети.

При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции

Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.

3 причина появления «скачков напряжения» — аварии в передающих электрических сетях

Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда».

Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

4 причина появления «скачков напряжения» — обрыв «нуля»

Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.

5 причина появления «скачков напряжения» — ослабление заземления

Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.

6 причина появления «скачков напряжения» — значительная перегрузка сети

Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.

7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки

Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.

8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач

Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.

9 причина появления «скачков напряжения» — «мерцающий эффект»

Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.

10 причина появления «скачков напряжения» — попадание молнии в линии передач

Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.

11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий

Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.

12 причина появления «скачков напряжения» — проведение сварочных работ

Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.

Таким образом, можно выделить несколько групп причин порождения скачков напряжения:

  • скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
  • скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
  • скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
  • скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
  • скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
  • скачок напряжения появился из-за аварий техногенного характера.

 

Как бороться со скачками напряжения в сети

Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.

Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

Читайте также по теме:


Тех. поддержка

Бастион в соц. сетях

Канал Бастион на YouTube

Причины низкого напряжения в сети

25-10-2016

Причины понижения напряжения в сети могут быть различные. В этой статье мы остановимся на основных причинах, приводящих к низкому напряжению.

Основные причины снижения напряжения в сети

Всегда ли в нашей сети — 220? Вопрос, конечно, риторический, очень часто напряжение в сети не соответствует нормативам и является пониженным или повышенным.
Приводим список основных причин низкого напряжения:

  • низкое напряжение в линии ЛЭП;
  • недостаточная мощность трансформатора, установленного на подстанции;
  • перекос напряжения по фазам на линии от трансформатора до дома;
  • проблемы в распределительном щитке, малое сечение проводов в разводке.

Подробнее о причинах низкого напряжения и методах решения данной проблемы

Падение напряжения в линии ЛЭП

Одной из глобальных причин понижения напряжения является недостаточная мощность электрогенерации и электротрансформации в регионе. Недостаточное финансирование электрической отрасли с одной стороны, и бурный рост потребления электроэнергии в последние годы с другой стороны приводят к проблемам с качеством электроснабжения.

Повлиять на решение данной проблемы мы практически не можем, единственное решение в этой ситуации — покупка и установка повышающего стабилизатора напряжения.

Низкая мощность распределительного трансформатора или неправильная его настройка

Часто бывает так. К одному трансформатору было подключено определенное количество потребителей, и проблем с качеством электроэнергии не было. Потом к этому же трансформатору или подстанции подключаются ещё новые дома, и мощность его оказывается недостаточной, это приводит к понижению напряжения во всей подключенной сети. Такое явление часто наблюдается в дачных посёлках, и напряжение в 180, 170, 160 и даже 150 Вольт там не редкость.

Какие есть методы решения?. Наиболее правильный — замена трансформатора на более мощный. Но для этого нужно иметь общее решение всех потребителей и финансовые возможности. Индивидуально решить проблему в этом случае можно путём установки повышающих стабилизаторов напряжения на весь дом или нужную группу приборов.

Перекос фаз в распределительной сети, вызывающий снижение напряжения, и методы решения

Причиной снижения напряжения на входе в дом может быть неравномерное распределение потребителей в распределительной сети или «перекос фаз». Как правило, такое явление наблюдается в сельской местности, в дачных посёлках и частном секторе. Дома в таких сетях подключаются к электросети по мере строительства новых объектов индивидуально. Часто при этом подключение идёт по принципу «так удобно монтеру» или «этот провод ближе». В результате на одной «фазе» или одном «плече» сети потребителей оказывается больше, чем на других. Напряжение в этой части электросети будет ниже.

Исправить ситуацию путём повышения значения напряжения на питающем трансформаторе не получится, так как этот приведёт к повышенному (или опасно высокому) значению напряжения на других участках этой электросети. Правильное решение — устранить неравномерность распределения потребителей, переключится на питание от другой фазы сети. Но часто это бывает не возможно физически. Второй вариант решения проблемы — установка стабилизатора напряжения на входе в дом.

Проблемы в домашней сети, приводящие к понижению напряжения и методы их устранения

Первое, что нужно сделать, если у Вас низкое напряжение в розетке, — это выяснить, является ли проблема внутренней или внешней.

Самое простое — узнать, есть ли проблемы с электропитанием у соседей. После надо отключить автоматы в распределительном щите и измерить напряжение на входе в доме. Если напряжение низкое — то проблема во внешней сети. Если напряжение на входе в дом нормальное, то проблема в доме.
Приводим список частых проблем в электросети дома или квартиры:

  • снижение напряжения может быть вызвано плохими контактами на входе в распределительный щит или плохими контактами в самом распределительном щите;
  • снижение напряжения может быть вызвано плохими контактами в комнатных распределительных коробах и на самих розетках;
  • снижение напряжения может быть вызвано неправильным выбором сечения провода в разводке.

Если выявить точную причину самостоятельно не получилось, следует обратиться за помощью к профессиональному электрику.

Как поднять напряжение с помощью стабилизаторов

Существует два основных способа решить проблему низкого напряжения.
Первый способ — установка большого мощного стабилизатора на входе в дом. Такой стабилизатор должен иметь большую мощность, большой диапазон входного напряжения и высокую надёжность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 3,5 кВт до 12 кВт.

На следующем видео представлены возможности стабилизатора SKAT ST-12345.

Второй способ — установка локальных стабилизаторов для питания отдельных электроприборов. Такие стабилизаторы должны иметь достаточную мощность, большой диапазон входного напряжения, компактный размер и высокую надёжность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 1,5 кВт до 3 кВт.
На следующем видео представлены возможности стабилизатора SKAT ST-2525.

Выводы: для решения проблемы низкого напряжения в доме необходимо установить причины этого явления, попытаться устранить проблемы в сети, использовать стабилизаторы напряжения.

Читайте также по теме

Товары из статьи

Каково допустимое напряжение в сети 220 В по ГОСТу: 4 причины введения стандарта


Полные нормы напряжение в электросети: ГОСТ

Несмотря на то, что большинство обывателей и людей, не относящихся к категории осведомленных в области напряжения в их электросети, утвердительно скажет о том, что стандартным напряжением является показатель в 220 В. К их удивлению, даже несмотря на старые и привычные всем наклейки, на котором указан общепринятый стандарт, уже не актуальны.

С 2015 года в РФ действует новый стандарт – уровни 230 В и 400 В, что соответствует европейским стандартам.

Такие акты приняты также в Украине и странах Балтии, в том числе Беларуси.

К чему привело изменение стандарта:

  • Изменилось рабочее напряжение на кабеле электросети;
  • Колебания стали чуть более значимыми, нежели ранее, но все также в допустимых нормах 5% и максимальных – 10%;
  • Потенциальная оплата услуг поставки электроэнергии выросла не совершенно символическую сумму;
  • Частота подачи напряжения – 50 Гц.

Таким образом, напряжение в сети должно считаться несколько возросшим в бытовой практике. Но на деле же все иначе и это сулит наличие подводных камней в сфере поставки организациями электроэнергии. Несмотря на общепринятый стандарт, организации, поставляющие напряжение в квартиры домов, подают все по тем же меркам, принятым еще в советское время и равным 220 В. Все это происходит официально по ГОСТу 32144-2013, которым и руководствуются поставщики.

Стандартные параметры электрической сети

Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий. Как общепринято считать, основными параметрами, определяющими нашу бытовую электроэнергию, считаются частота и сила переменного тока и напряжение. Однако есть и ряд других, которые стоит учитывать.

Стандартные параметры электрической сети включают в себя:

  • Коэффициент временного напряжения;
  • Импульсное напряжение;
  • Отклонение частоты напряжения на кабеле электросети;
  • Диапазон изменения напряжения;
  • Длительность потери напряжения и прочие.

Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях. В рамках нового стандарта 230 В/400 В номинальное отклонение допустимо в пределах 5% и максимально должны отмечаться в кратковременных промежутках не более 10%. Таким образом, такое теоретические отклонение допускается в пределах 198 В и до 242 В. Такой размах может считаться актуальным для большинства нынешних квартир.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  • Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  • Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  • Ошибки при планировке и выполнении прокладочных работ в доме;
  • Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Посадка напряжения в домашней сети

Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.

При обнаружении таких колебаний, максимальная просадка фиксируется и с этими показателями, ссылаясь на общепринятый стандарт и качество поставляемой энергии, нужно обращаться в органы-поставщики электроэнергии.

При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.

Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:

  • Быстрее перегорают лампочки;
  • Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
  • Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.

Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения. Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.

Нормальное падение работы напряжения в сети:

  • В так называемых воздушных линиях – до 8%;
  • В кабельных линиях электроснабжения – до 6%;
  • В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

Допустимое напряжение в сети 220 В по ГОСТу (видео)

На счетчиках пишется показатель сетевого напряжения, который должен учитывать каждый житель дома. Следите за своими электроприборами правильно и вовремя обращайтесь в нужные инстанции.

Напряжение электрической сети

Определение 1

Напряжение электрической сети (или сетевое напряжение) является среднеквадратичным (действующим) значением напряжения в электросети переменного тока, которая доступна для конечного потребителя.

Среднее значение напряжения электрической сети

Базовые параметры для сети переменного тока, такие как частота и напряжение, будут различными для каждого региона. Так, большинству европейских стран будет доступно низкое сетевое напряжение, составляющее в трёхфазных сетях 230/400 В с частотой в 50 Гц, в промышленных сетях при этом оно составит 400/690 В.

Если напряжение электрической сети будет выше (от 1000 В до 10 кВ), можно зафиксировать уменьшение потерь при передаче электроэнергии. Это позволит задействовать более мощные электроприборы. В то же время увеличивается тяжесть последствий при поражения током неподготовленных пользователей электроэнергии от незащищенных сетей.

С целью задействования электроприборов, ориентированных на одно сетевого напряжения, в районах, где нужно использовать другое, потребуются соответствующие преобразователи в виде, например, трансформаторов. Определенные виды электроприборов (они в основном, из разряда специализированных и не относятся к бытовым) нормально функционируют не только в зависимости от напряжения, но и от частоты питающей сети.

У современного высокотехнологичного электрооборудования с импульсными преобразователями напряжения могут быть переключатели на разные значения сетевого напряжения. При этом допускается их отсутствие. Таким электрооборудованием допускается широкий диапазон входных напряжений, варьируемый от 100 до 240 В, номинальная частота при этом – 50-60 ГЦ. Это позволяет применять такие электроприборы без преобразователей буквально в любой стране мира.

Параметры напряжения электрической сети в России

Замечание 1

Производителями электроэнергии генерируется переменный ток промышленной частоты (в России она составляет — 50 Гц). В большинстве случаев линии электропередач передают трехфазный ток. Такой ток повышается до сверхвысокого и высокого напряжения посредством работы трансформаторных подстанций, устанавливаемых вблизи электростанций.

По межгосударственному стандарту ГОСТ 29322-2014, сетевое напряжение должно составлять 230 В, а частота при этом будет 50Гц. При этом продолжают применяться системы 220/380 В и 240/415 В.

На сельских улицах к жилым домам подводят четырехпроводные ЛЭП (линии электропередачи). Это означает присутствие трех фазовых проводов и одного нейтрального провода (нулевого). Входные автоматы и счетчики энергопотребления зачастую используются на три фазы.

К однофазной розетке подводятся такие виды проводов:

  • фазовый;
  • нулевой провод;
  • провод защитного заземления (зануления).

Замечание 2

Электрическое напряжение между «фазой» и «нулем» составляет 230 Вольт. Согласно правилам устройства электрических установок (ПУЭ-7), продолжает применяться величина напряжения в 220В. При этом в сети по факту напряжение практически всегда оказывается выше данного значения, достигая в своем максимуме 250В и колеблясь до 190В.

Формулы измерения сетевого напряжения

Частота напряжения электрической сети может быть определена без задействования внешних дополнительных средств для измерения (как например, компараторов). Однако это может отразиться на точности ее измерения, существенно снижая ее.

Методика таких измерений заключается в следующем: производится выборка за период сетевого напряжения из $N$ значений амплитуды напряжения. Далее суммируются результаты (исключается знак). После этого они усредняются. Полученный результат будет зависеть от коэффициента:

$\frac{2 \sqrt{2}}{\pi}$

Указанный коэффициент помогает установить зависимости действительного значения синусоидального сигнала и средневыпрямленного. Такой метод измерений достаточно прост, не требует большого числа ресурсов микроконтроллера (временных и ресурсов памяти).

При изменении сигнала сетевого напряжения за основу берется синусоидальный закон (в результате использования на электростанции синхронных генераторов). Частота изменения сигнала при этом будет 50-60 ГЦ.

На практике фиксируется или значительное искажение синусоиды напряжения или замена ее прямоугольными импульсами. Причиной этому становится:

  • воздействие сторонних факторов в виде подключения к сети нелинейных нагрузок большой мощности;
  • использование инверторов с выходным квазисинусоидальным напряжением. 2$

    Частота напряжения вычисляется по формуле:

    $F=\frac{F_д}{N_1+N_2}$, где $F_д$ — частота дискретизации.

    в квартире и на даче

    Низкое напряжение в сети – можно сказать, болезнь удаленных потребителей. Стиралка еле крутится, в квартире или в доме; совершенно исправный насос вдруг перестал качать воду на даче – причина чаще всего одна: падение напряжения сети электропитания. При допустимых пределах 195 – 235 В (если линейное напряжение, как и нас и в Европе, 220 В) на «кончиках» распределительной сети может быть 180 и даже 175 В.

    Прежде всего, нужно разобраться, где происходит падение напряжения. Тут не нужно измерений и приборов – достаточно поспрашивать соседей. Если у них все в порядке, потери напряжения – в Вашей абонентской проводке и нужно звать мастера-электрика.

    Повышение напряжения в сети электропитания

    Если же низкое напряжение у всех в округе – нужно думать, как повысить напряжение в сети у себя. Но не пугайтесь сразу же больших затрат на чудеса современной электроники. Они нужны, о них речь пойдет ниже. Но чаще всего проблему можно решить быстро и без хлопот подручными средствами. Причем – технически грамотно и совершенно безопасно.

    При стабильно низком напряжении в сети выручит самый обыкновенный понижающий трансформатор на 12 – 36 В. Да, да, именно понижающий. И большой его мощности не потребуется. 100-ваттный потянет нагрузку в 500 Вт, а киловаттный – в 5 кВт. И увеличить напряжение в сети можно до допустимых пределов.

    Никаких чудес, никакой паранауки – достаточно такой трансформатор использовать как повышающий автотрансформатор, добавив напряжение понижающей обмотки к линейному. Тогда при 175 В в розетке на выходе будет при 12 В добавочных 187 В. Маловато, но бытовая техника работать будет. Если вдруг напряжение повысится до нормы, автотрансформатор выдаст 232 В; это еще в норме. При 36 В добавочных 175 В вытягиваем до 211 В – норма! Но вдруг и в розетке норма окажется, получим 256 В, а это уже нехорошо для электроприборов. Поэтому лучше всего – 24 В добавочных.

    А как же мощность? Дело в том, что в сетевой обмотке автотрансформатора течет РАЗНОСТНЫЙ ток, и если повышать напряжение на небольшую долю от исходного, он окажется совсем незначительным. Правда, в дополнительной обмотке пойдет суммарный ток, но она в понижающих трансформаторах выполняется из толстого провода и при мощности исходного трансформатора в 100 Вт выдержит ток в 3-5 А, а это более 500 Вт при 220 В.

    Нужно только правильно сфазировать обмотки. Для этого включаем трансформатор, как показано на схеме, БЕЗ НАГРУЗКИ. К гнездам «Прибор» подключаем любой вольтметр переменного тока на 300 В и более, хотя бы тестер. Показывает меньше, чем в розетке? Меняем местами концы любой из обмоток. Стало больше, чем в розетке? Все, можно пользоваться. Потребителей включаем вместо измерительного прибора.

    Нужно только поставить в цепь сети предохранитель – вдруг в розетке «зашкалит» (это может случиться, если на старой и плохо обслуживаемой подстанции испортится зануление), так пусть он сгорит, а не техника.

    Подходящий трансформатор можно найти на «железном» или радиорынке, а то и у себя в кладовке. Не спутайте только с гасящим устройством для низковольтных электропаяльников – они выполнены на конденсаторах, и от них толку не будет, а будет авария.

    Защита от перепадов напряжения

    В городских условиях напряжение в сети, как правило, держится, но актуальной становится защита квартиры от перепадов напряжения. Вот тут пора вспомнить о чудесах электроники, поскольку «железно – проволочная» электротехника эффективных, простых и дешевых способов их сглаживания не знает.

    Поспрашивайте в электро- и радиомагазинах автомат защиты от перепадов напряжения; их еще называют «барьер защитный». Как примерно такой выглядит, видно на иллюстрации. Современные устройства такого типа сравнительно недороги, компактны, их легко подключить и обслуживания в процессе эксплуатации они не требуют.

    Простой защитный барьер для домашней электросети

    Но не вспоминайте об автотрансформаторе на даче – защитный барьер лишь устраняет броски напряжения; все время держать напряжение в розетке при стабильно пониженном он не может. В качестве накопителей энергии в таких устройствах используются суперконденсаторы, а они хоть и «супер», но все же не электрогенераторы.

    Как все-таки быть при нестабильном напряжении?

    Бывает и так, что напряжение в сети резко колеблется – то меньше нормы, то больше. Это признак запущенного местного электрохозяйства: тронутых коррозией распределительных проводов в сочетании с плохим нулем на подстанции. Законные меры воздействия на энергетиков оставим юристам; данная же статья техническая, и нам нужно знать, как держать напряжение в норме.

    Старый добрый стабилизатор напряжения для дачи вполне подойдет. Возможно, еще от дедушкина черно-белого телевизора, если хранился в подходящих условиях. Только нужно учесть, что наиболее употребительные феррорезонансные стабилизаторы могут давать очень короткие, в несколько миллисекунд, выбросы напряжения, а они могут повредить компьютерную технику, современный телевизор и вообще все, где используются импульсные блоки питания.

    Поэтому после такого стабилизатора желательно включить описанный выше автотрансформатор, но с добавкой не 24, а 6-12 В. Напряжение в розетке будет в пределах нормы, а обмотки с большой индуктивностью на массивном железе автотрансформатора паразитные импульсы погасят.

    В продаже на интернет-аукционах и с рук можно встретить старые промышленные магнитнокомпенсационные стабилизаторы, и вроде бы подходящей мощности: 1-10 кВт. Но ныне применение таких устройств запрещено. Они хорошо держат напряжение, но дают большую реактивную составляющую потребляемой мощности, очень вредную для управляемых электроникой энергосистем.

    Энергетики, вооруженные ныне компьютерным мониторингом, засекают «реактивку» мгновенно, вычисляют источник абсолютно точно, а штрафные санкции (весьма внушительные) применяют охотно и без промедления.

    В частном домовладении достаточно обеспеченного владельца радикальное средство стабилизации напряжения в домовой сети – электронный преобразователь напряжения с собственным накопителем энергии. По принципу действия это тот же компьютерный «бесперебойник» (UPS), но на мощность 3-10 кВт.

    Стоят такие устройства весьма и весьма недешево (3-20 тыс. долл. США), но обеспечивают идеальное качество напряжения в сети и электропитание потребителей при ее пропадании. В отличие от компьютерных UPS, они, как правило, имеют интерфейс связи со снабженным собственной электроникой аварийным дизель-генератором, так что «движок» запускается не сразу при пропадании сети, а спустя некоторое время, или когда аккумулятор бесперебойника начинает садиться.

    В заключение – важный момент. Человек, поверхностно знакомый с электротехникой, может «сообразить»: ага, компьютерный киловаттный UPS, стало быть, сможет держать утюг почаса-час, а телевизор или люстру – чуть ли не сутки, а стоит несколько сотен долларов. Поставлю-ка я такой на даче!

    Неверно. Компьютерные UPS рассчитаны на кратковременное эпизодическое использование, потому и стоят в десятки раз дешевле ИБП общего назначения. При непрерывном использовании достаточно дорогостоящий прибор очень быстро окончательно выйдет из строя.

    ***

    © 2012-2020 Вопрос-Ремонт.ру

    Загрузка…

    что еще почитать:

    Вывести все материалы с меткой:

    Гармонизация сетевого напряжения Великобритании и ЕС — Coffeetime

    Найдите и добавьте в закладки нашу домашнюю страницу по адресу http://www.coffeetimeuk.com/

    См. Также:

    По закону ваша электрическая сеть должна обеспечивать 230 вольт + 10% — 6% (т.е. между 216,2 вольт и 253 вольт) и поддерживать частоту на уровне 50 Гц ± 1% (т.е. между 49 Гц и 51 Гц) в течение 24 часов. .

    ЕС мудро решил гармонизировать стандартное сетевое напряжение Великобритании 240 В переменного тока и европейский стандарт 220 В переменного тока при 230 В переменного тока.Теоретически это прекрасно, но затраты на замену всего оборудования для подачи питания на 230 В были нерентабельными (не было никаких преимуществ в изменении, кроме «гармонизации»). Так что, чтобы избежать обвинений в несогласовании, они просто возились с законными пределами напряжения, на самом деле ничего не изменилось! .

    Закон теперь гласит, что 230 В + 10% -6%, тем самым позволяя европейской системе 220 В оставаться на уровне 220 В, а в Великобритании — на уровне 240 В, но при этом оба кажутся гармонизированными!

    Дома получают питание от трансформатора на подстанции (обслуживает 10-100 домов) и являются однофазными (одна фаза, одна нейтраль).Подстанция снабжается трехфазным напряжением 11 000 вольт и распределяет нагрузку между потребителями, уравновешивая спрос по трем фазам. По мере того, как к фазе добавляются новые потребители или существующие потребители потребляют больше энергии, эта фаза становится перегруженной, и напряжение и частота проседают ниже допустимого предела, особенно в периоды высокого спроса, например, при перерывах между приемами пищи и перерывах телепрограмм. Эффект одновременного включения 20 миллионов чайников может довести энергоснабжение National Grid до предела! Вот почему нам часто требуется Variac для обжарки кофе

    .

    Напряжение сети

    Напряжение «системы на 11 000 вольт» автоматически регулируется на первичных подстанциях примерно до 11 200 вольт и поддерживается на этом уровне в широком диапазоне нагрузок системы.Большинство проблем с напряжением возникает из-за бытовой системы на 240 вольт, которая со временем перегружается, например в часы пик вечером, когда все готовят, или на Рождество, когда мое сетевое напряжение было очень низким почти все время .. Иногда, однако, проблемы с низким напряжением могут быть вызваны плохой внутренней проводкой дома или другими устройствами с высоким током утечки на та же цепь или кольцо … так что, возможно, стоит проверить это, особенно если у вас старый дом. С другой стороны, не игнорируйте возможность перенапряжения, это может вызвать проблемы с жаркой и повлиять на долговечность вашего ростера.

    Эта удобная диаграмма электросети из Википедии, лучшая из найденных мною, и на самом деле показывает прежние (и в большинстве случаев фактические) напряжения в так называемых «согласованных» европейских странах. Это важно, если вы покупаете жаровню для использования в этих странах. Однако есть неточности, в частности, Ирландия, которая, я не думаю, была страной, где раньше было 220 В. Это правда, что среднее напряжение обычно составляет 239 в Северной Ирландии и 235 в Южной Ирландии и

    .

    Эта ссылка объясняет все о гармонизации напряжения
    230 В, что произошло на самом деле

    Мы сейчас в 2014 году, и допустимые пределы изменения напряжения в Великобритании и Ирландии находятся в диапазоне от 207 до 253 вольт.Это соответствует европейскому стандарту EN50160.

    Научный эксперимент: Измерение колебаний напряжения сети

    Введение

    Целью этого эксперимента является мониторинг колебаний напряжения и частоты в сети в течение семи дней. Эта информация должна отображать эффекты загрузки национальной сети.

    У электроэнергетических компаний есть допуски, которым они обязаны соответствовать.

    Допуски на однофазную сеть в Европе:

    • Напряжение 230 В переменного тока, среднеквадратичное значение + 10% / — 6%
    • Частота сети 50,00 Гц +/- 0,2 Гц

    Установка оборудования

    ADC-42 считывает напряжения в диапазоне ± 5 вольт. Напряжение в сети должно быть понижено до ± 4 В (остается место для колебаний напряжения).

    Один из самых простых и безопасных способов измерения напряжения в сети — это использовать простой блок питания типа «подключите к стене», чтобы снизить напряжение сети до более безопасного уровня.Это имеет то преимущество, что обеспечивает электрическую изоляцию от опасного сетевого напряжения.

    Рисунок 1: используемое оборудование

    Доступны два типа базовых силовых блоков:

    Типы выходов переменного тока

    Их проще всего использовать, поскольку они просто дают масштабированную версию сетевого напряжения. Обычно они выдают выходной сигнал в диапазоне от 6 до 12 В переменного тока, и поэтому может потребоваться простая схема делителя напряжения для ослабления выходного сигнала до подходящего диапазона (см. Ниже).

    Типы выходов постоянного тока

    Они похожи на перечисленные выше типы переменного тока, но также имеют встроенный выпрямитель для преобразования переменного напряжения в постоянный, а также обычно конденсатор для обеспечения некоторого сглаживания сигнала постоянного тока — некоторые типы также могут иметь какой-либо регулятор напряжения. Чтобы использовать этот тип, вам необходимо снять выпрямитель и конденсатор (и регулятор, если он установлен) — это должен делать только квалифицированный электрик.

    Предупреждение: если у вас есть сомнения, обратитесь за советом к квалифицированному электрику.

    Выходной сигнал блока питания может нуждаться в дополнительном ослаблении, чтобы соответствовать входному диапазону ADC-42. Лучше всего это сделать с помощью простого резисторного делителя напряжения, как показано в приведенной ниже формуле.

    Рисунок 2: принципиальная схема

    Расчет делителя потенциала

    Vo = Vs x Rb / (Ra + Rb)
    Vo / Vs = Rb / Ra + Rb
    Vs / Vo = Ra + Rb / Rb
    (Vs / Vo) Rb = Ra + Rb
    Ra = (Vs / Vo ) Руб. —

    руб.

    Пример расчета делителя потенциала

    Vs = 20 В, пик
    Vo = 4 В, пик
    Итак, Ra = 5Rb — Rb
    Следовательно, Ra = 4Rb

    С приведенным выше уравнением и Rb = 10l, Ra = 40k.Значение 40 кОм не является стандартным сопротивлением резистора, поэтому можно использовать последовательно включенные резистор 30 кОм и резистор 10 кОм.

    Использование этих силовых блоков с PicoLog и PicoScope:

    Анализатор спектра PicoScope можно использовать для исследования содержания гармоник в электросети.

    PicoLog можно использовать для отслеживания долгосрочных изменений напряжения питания, а также питания.

    Проведение эксперимента

    Эксперимент проводился в течение одной недели с использованием вышеуказанного оборудования и программного обеспечения PicoLog.Образцы отбирались каждые 30 секунд.

    Вопросы

    1. Что случилось с сетевым напряжением?
    2. Что случилось с частотой сети?
    3. Находится ли напряжение в сети в пределах допусков, установленных для электроэнергетической компании?

    Решения для сетевого напряжения | Helix Semiconductors

    Решения для сетевого напряжения

    Zero Power HV MuxCapacitor® — это настраиваемое высоковольтное устройство понижения постоянного напряжения.Устройство содержит две ячейки MuxCapacitor с входным напряжением 400 В постоянного тока. Каждая ячейка поддерживает коэффициенты снижения выходного напряжения 1,0, 0,667 и 0,5, обеспечивая выходную мощность 5 Вт. Ячейки MuxCapacitor могут быть подключены последовательно или параллельно для большего снижения напряжения или большей выходной мощности соответственно.

    Параллельная конфигурация — более высокий выходной ток

    MuxCapacitor IC AC-DC, HV Parallel Configuration

    MuxCapacitor IC AC-DC включает в себя параллельную конфигурацию HV MuxCapacitor с прямым преобразователем трансформатора для приложений, требующих безопасной изоляции.Коэффициент снижения напряжения HV MuxCapacitor оптимизирован для работы от 90 до 120 В переменного тока, обеспечивая выходную мощность 10 Вт.

    В число приложений входят:

    • Шлюзы IoT и IIoT
    • Умные розетки
    • Дистанционные датчики
    • Детекторы дыма и CO

    Дополнительная информация здесь.

    Высоковольтный DC-DC, 5 Вт

    MuxCapacitor 5W High Voltage DC-DC — это простая высоковольтная плата постоянного тока с понижением напряжения. Плата принимает до 400 В постоянного тока и обеспечивает 1.Коэффициенты уменьшения выходного напряжения 0, 0,667 и 0,5 для выходной мощности 5 Вт.

    Приложения включают:

    • Высоковольтные аккумуляторные батареи
    • Приложения AC-DC с внешним выпрямителем

    Загрузить краткое описание продукта DC-DC высокого напряжения

    КОНФИГУРАЦИЯ СЕРИИ ВЫСОКОГО НАПРЯЖЕНИЯ С ВНЕШНИМ РЕГУЛЯТОРОМ ВЫХОДА

    Конденсатор HV plus представляет собой преобразователь напряжения переменного тока в постоянный для приложений малой мощности (250 мВт). Каскады HV MuxCapacitor позволяют создавать компактные корпуса без использования громоздких катушек индуктивности и больших конденсаторов.Регулируемое выходное напряжение LDO устанавливается внешним резистивным делителем.

    Приложения включают:

    • Умные розетки
    • Системы высоковольтных батарей
    • Дистанционные датчики
    • Счетчики электросети

    Скачать MuxCap LDO Abstract

    Конфигурация серии HV плюс источник тока

    Высоковольтный конденсатор MuxCapacitor плюс источник тока контроллер освещения AC-DC для светодиодов малой и средней мощности. Каскады HV MuxCapacitor позволяют создавать корпуса с малым форм-фактором без использования громоздких катушек индуктивности и больших конденсаторов.Регулируемый источник тока устанавливается с помощью внешнего резистора.

    Области применения:

    • Светодиодное освещение
    • Интеллектуальные осветительные приборы
    • Умные розетки

    Загрузить MuxCap LED Abstract

    Изоляция

    MuxCapacitor с изоляцией представляет собой безтрансформаторный преобразователь напряжения AC-DC для малой мощности Приложения Интернета вещей. Емкостный драйвер питания и приемник заменяют традиционный трансформатор, предлагая изоляцию 3 кВ, обеспечивая компактный форм-фактор.

    Приложения включают:

    • Дистанционные датчики
    • Шлюзы IoT и IIoT
    • Умные розетки
    • Пользовательский интерфейс бытовой техники

    Скачать IoT Abstract

    Резервное питание

    Набор микросхем резервного питания MuxCapacitor интегрируется в мощный SMPS для обеспечения питания в условиях «ожидания» низкого спроса. Набор микросхем контролирует условия нагрузки, а его линейный контроллер включает основной SMPS, когда нагрузка «просыпается».”Емкостный драйвер питания обеспечивает безопасную изоляцию.

    Приложения включают:

    • Игровые ПК, игровые приставки
    • Серверы
    • Большие плоские дисплеи
    • Инверторы питания
    • Бытовые приборы

    Скачать в режиме ожидания Аннотация


    Решения Helix позволяют электронным приложениям улучшать их энергоэффективность и конкурентоспособность.

    Электробезопасность электронных схем своими руками

    Прочтите эту информацию — это может спасти вам жизнь!

    Электробезопасность при создании электронных проектов своими руками

    Электричество сетевого напряжения чрезвычайно опасно.Существует значительный риск смерти от поражения электрическим током, если электричество сетевого напряжения проходит через тело. Также может возникнуть риск пожара и взрыва, если электрический кабель не подключен правильно и неправильно. Поэтому необходимо соблюдать меры предосторожности при использовании электросети или аналогичного устройства.

    Есть много вещей, которые могут выйти из строя с электричеством с потенциально ужасными последствиями. Некоторые из них очевидны — НИКОГДА не проверяйте наличие напряжения в сети пальцем! — но другие могут не быть такими, как радиаторы, подключенные к высоковольтному разъему симистора.Прочтите эту страницу полностью и убедитесь, что вы продумали все аспекты при проектировании следующей схемы. В случае сомнений обратитесь за советом к квалифицированному специалисту .

    В этом разделе даются советы по электроснабжению от бытовых сетей и более низкому напряжению. Более высокие напряжения, такие как электрические подстанции и железнодорожные порталы, намного опаснее. Никогда не приближайтесь к высоковольтным кабелям или к кому-либо, получившему удар от очень высокого напряжения, если у вас нет подтверждения об отключении питания.

    Удар электрическим током

    Наиболее очевидный риск поражения электрическим током при контакте с цепью под напряжением. Здесь через тело проходит электрический ток, что может привести к остановке работы сердца (остановка сердца).

    Что такое опасное напряжение?

    На самом деле важен ток, а не напряжение, но из-за сопротивления тела вы не можете получить опасный ток без достаточно высокого напряжения.Вы можете решить это самостоятельно, используя закон Ома, но в этом случае важно помнить о принципах безопасности. Как правило, работа с напряжением ниже 50 В относительно безопасна, но все, что выше, может быть опасным. .

    Как правило, вы защищены от поражения электрическим током в большинстве электронных схем, работающих от бытовых аккумуляторов, включая автомобильные аккумуляторы на 12 В. Однако в вашем доме могут быть батареи, которые могут представлять реальную опасность, например, выход из ИБП (источника бесперебойного питания) для компьютера или если у вас есть домашняя энергетическая система, такая как солнечные батареи.

    Даже если ваше оборудование рассчитано на работу при напряжении ниже опасного для поражения электрическим током, оно все равно может представлять опасность ожогов, пожара или даже взрыва — так что продолжайте читать.

    AC против DC

    Вы, возможно, слышали, что некоторые люди говорят, что переменный ток опаснее постоянного тока, или наоборот. Вместо того, чтобы слишком много спорить по поводу одного и другого , как переменный, так и постоянный ток при высоких напряжениях могут быть смертельными . Считается, что переменный ток с большей вероятностью вызывает остановку сердца, прерывая электрические сигналы, управляющие сердцем, но постоянный ток может вызвать ожоги, и оба они все еще могут убивать, поэтому обсуждение различий довольно академично.Просто помните, что электричество может убить, если оно имеет достаточное напряжение и ток, будь то переменный или постоянный ток.

    Ниже приведены способы снижения риска поражения электрическим током.

    Избегайте попадания в сеть

    Самый безопасный способ — полностью избегать использования сетевого напряжения в компьютерной цепи. Большинство электронных схем работают с низким напряжением и могут питаться от батарей или внешнего подключаемого трансформатора. Самый безопасный способ использовать трансформатор — использовать блок питания (например, адаптеры питания, обычно используемые с портативными компьютерами) или трансформатор (известный как настенная бородавка в США), например, те, которые используются для питания вашего мобильного телефона.Они преобразуют напряжение до безопасного напряжения, при котором будет работать электронная схема (например, от 6 В до 12 В для Arduino), и в большинстве случаев также преобразуют сигнал из переменного тока (который подается из сетевой розетки) в постоянный ток (используется для большинство электронных схем). Эти трансформаторы обычно имеют двойную изоляцию и не имеют частей под высоким напряжением, доступных пользователю. Убедитесь, что трансформатор соответствует типу цепи (например, номинальному напряжению и току) и источнику питания, к которому он подключается.

    Вы все равно должны проверить трансформатор на наличие каких-либо физических повреждений, прежде чем включать что-либо в сеть.

    Если вам нужна высокая мощность, внешний источник питания не всегда может быть вариантом, и в этом случае следует проявлять особую осторожность.

    Изолируется от сети при работе

    Если вы когда-либо видели оборудование, на котором написано: «Высокое напряжение, не снимайте крышку» или «отключите питание перед снятием крышки», тогда существует риск, что внутри есть незащищенное сетевое напряжение.Если вы сняли крышку с сетевого электрического устройства, где это возможно, эту крышку необходимо зафиксировать на месте перед подключением к сети.

    Заземление корпуса сетевого оборудования

    Если вы используете в проекте сетевое напряжение, то обычно следует использовать металлический корпус и заземлять его. Для этого нужно взять провод от клеммы заземления и подключить его к открытой металлической части корпуса. Иногда в корпусе есть специальный разъем для заземления, но если его нет, то его можно соединить с металлическим винтом, скрепляющим части корпуса вместе.Затем вы должны выполнить соответствующее тестирование, чтобы убедиться, что все металлические части / части корпуса правильно заземлены.

    Риск, связанный с сетевым напряжением, заключается в том, что находящееся под напряжением соединение (например, незакрепленный провод) входит в контакт с металлическим корпусом, а затем кто-то касается корпуса, создавая путь для прохождения тока через человека на землю. Если это произойдет, это может представлять опасность для любого пользователя оборудования. Если корпус заземлен, то при контакте провода под напряжением с корпусом это обеспечит прямой путь к земле и сожжет предохранитель оборудования.Если вы обнаружите, что ваш предохранитель продолжает перегорать, проверьте, нет ли короткого замыкания на корпус. При использовании сетевого разъема для подачи электричества в корпус необходимо использовать 3-контактный разъем, например разъем IEC C13 (2-контактные разъемы не имеют заземления и поэтому не подходят). Всегда используйте предохранитель подходящего размера к оборудованию (например, в вилке), чтобы гарантировать, что, если есть соединение с землей, предохранитель сгорел. Предохранитель может находиться внутри вилки (стандарт для вилок в Великобритании) или может использоваться комбинированный модуль разъема и предохранителя.

    Альтернативой металлическому корпусу является использование корпуса с пластмассовой изоляцией, однако, если это необходимо, вам необходимо убедиться, что нет никаких незаземленных металлических соединений, идущих изнутри наружу корпуса, которые могут соприкоснуться с напряжением сети. Это включает в себя любые переключатели или любые винты, используемые для фиксации печатной платы и любых внешних разъемов. Этого сложно добиться в проектах DIY, поэтому я рекомендую использовать заземленный металлический корпус. На коммерческом электрическом оборудовании часто можно увидеть символ двойной изоляции, указывающий на то, что используется полная изоляция, а не заземление.

    При использовании сетевого напряжения необходимо также убедиться, что невозможно соприкоснуться с какими-либо частями под высоким напряжением, проникнув через корпус. Лучше всего добиться этого, убедившись, что в корпусе нет отверстий, но иногда необходимо сделать отверстия в корпусе для вентиляции. В этом случае следует использовать пальцевой тест, чтобы убедиться, что палец, помещенный в отверстие, не может соприкоснуться с электричеством в сети. Очевидно, что если вы действительно это проверяете, вы должны делать это при отключенном электричестве.Также учтите, что у некоторых людей (особенно у детей) пальцы будут меньше.

    Проверьте состояние любого оборудования и используйте изолированные провода.

    Перед тем, как подключать какое-либо оборудование к сети, всегда проверяйте, чтобы оборудование не было видимых повреждений и не были повреждены провода. Это относится к любому электрическому оборудованию, сделанному дома или купленному, поскольку кабели со временем могут испортиться, особенно при неправильном хранении.

    Если вы проводите какие-либо испытания оборудования под напряжением (по возможности избегайте этого), убедитесь, что у вас есть надлежащим образом изолированные измерительные провода с достаточной изоляцией для проверяемого напряжения.Вы всегда должны проводить оценку рисков перед работой с оборудованием, находящимся под напряжением, и обеспечивать принятие соответствующих мер предосторожности для предотвращения травм в результате любых выявленных рисков.

    Изоляция сетевого напряжения и проверка после отключения питания

    В электрических приборах и самодельных проектах обычно довольно легко отключить питание, вынув вилку из розетки. В случае домашней электропроводки и оборудования, подключенного непосредственно к сети, например, охранной сигнализации, электрическая сеть может быть подключена непосредственно к оборудованию.В этом случае на стене, где они подключаются, обычно есть выключатель или панель с предохранителями, и оттуда должно быть отключено электричество.

    Каждый раз, когда вы работаете с оборудованием, подключенным напрямую к электросети, которое должно быть отключено, всегда проверяйте, чтобы убедиться, что сетевое питание отключено перед работой. Для домашнего пользователя можно использовать бытовой датчик напряжения, но рекомендуется использовать его только в качестве вторичного теста после того, как другие шаги по отключению источника питания уже выполнены.Всегда следите за тем, чтобы тестер не был поврежден и был в хорошем рабочем состоянии, и следуйте инструкциям производителя. Если вы сомневаетесь в том, что источник питания изолирован, обратитесь за профессиональной консультацией. Если вы беретесь за это в рамках своей работы, вы должны следовать руководству HSE, а не приведенному выше — см. Раздел «Электробезопасность на работе» и «Электрическое испытательное оборудование для использования электриками».

    Самый распространенный тип электрического тестера отечественного производства представляет собой отвертку с неоновой подсветкой внутри ручки.Вы кладете кончик отвертки на контакт, который хотите проверить, и касаетесь металлической пластины на другом конце отвертки. Если тестер находится в контакте с сетевым напряжением, загорается неон. Всегда проверяйте заранее, чтобы тестер не был поврежден. Не используйте их как отвертку.

    Другой вид отечественного электротестера выглядит как большой пластиковый карандаш с белым кончиком. Когда вы помещаете наконечник рядом с сетевым напряжением, наконечник загорается красным. В некотором смысле это лучше, поскольку вам не нужно напрямую физически контактировать с электросетью, но есть и обратная сторона.Карандаш питается от батареи, и если батарея разряжена, ничто не указывает на наличие напряжения в сети. Поэтому перед использованием тестера электросети, работающего от батареи, проверьте его на наличие известного источника под напряжением, чтобы убедиться, что он работает правильно. Это можно сделать, приложив тестер к правой стороне внешней вилки сетевого шнура при подключении к источнику питания. Для проведения этого теста нет необходимости открывать вилку или обнажать какие-либо токоведущие части.

    Это руководство предназначено только для занятий дома / хобби.Эти тестеры следует использовать после всех усилий по отключению питания. Эти тестеры не подходят для использования в рабочей среде — см. Руководство HSE — Электрическое испытательное оборудование для использования электриками.

    Используйте УЗО

    УЗО (устройства остаточного тока) и могут обеспечить элемент защиты от поражения электрическим током путем отключения источника питания в случае обнаружения неисправности или поражения электрическим током. УЗО теперь включены в домашнюю электропроводку в Великобритании, но многие дома были построены до того, как это постановление вступило в силу.

    Иногда их называют RCCB (автоматические выключатели остаточного тока) или ELCB (автоматические выключатели утечки на землю).

    Также можно приобрести сменные переходники УЗО. Вы подключаете их к сетевой розетке, а затем подключаете оборудование с питанием от сети к адаптеру, или вы можете получить те, которые заменяют вилку на вашем оборудовании. Если у вас есть собственная лаборатория / сарай / домашний офис, который вы используете для электромонтажных работ, то может быть хорошей идеей использовать их на всех розетках в этой комнате, но как минимум я бы рекомендовал использовать одну, когда вы впервые подключаете свой цепи к сети или при выполнении любых испытаний под напряжением.

    Изучите первую помощь и напарник

    Если вы работаете с сетевым напряжением, поблизости должен быть кто-то, кто знает, что вы делаете, чтобы помочь, если кто-то пойдет не так. По крайней мере, они могут отключить питание и набрать 999 (112 в Европе / 911 в США / 000 в Австралии), чтобы вызвать скорую помощь. Я также рекомендую вам и вашему другу научиться первой помощи. См. Страницу обучения на веб-сайте викторины по оказанию первой помощи для получения контактных данных организаций, обучающих оказанию первой помощи.

    Если вы когда-нибудь встретите кого-то, кто пострадал от поражения электрическим током и все еще подключен к источнику питания, не прикасайтесь к нему напрямую, так как вы также можете получить от него электрический ток. По возможности следует отключить электропитание (вынуть вилку из розетки или выключить оборудование). Если невозможно отключить питание, оттолкните человека от источника питания, используя изолирующий материал, например, сухую деревянную или пластиковую ручку метлы.

    Остерегайтесь активных радиаторов

    Мы рассмотрели очевидные вещи выше, но вам также необходимо принять во внимание любые компоненты, которые могут передавать электричество от сети, и любые особые функции безопасности.Например, симистор — это устройство, которое часто используется для переключения электрических токов сети. Как и любой полупроводник, эти устройства выделяют тепло, а при переключении больших нагрузок это может привести к большому нагреву. Чтобы рассеять это тепло и предотвратить перегрев симистора, часто используется радиатор. Корпус симистора подключается к радиатору. В некоторых симисторах соединение радиатора подключается к одному из сетевых выводов, а в других — соединение изолировано от напряжения сети.Обычным симистором является симистор BTA08-600, в котором соединение радиатора изолировано от сетевого напряжения, но почти идентичный BTB08-600 не изолирован. Вы можете задаться вопросом, зачем возиться с неизолированной версией, но тепловые характеристики неизолированной намного лучше, следовательно, требуется меньший радиатор. Для электроники для хобби я рекомендую всегда брать изолированные (которые в любом случае более доступны), чтобы радиатор никогда не работал. Я даже использую изолированные симисторы в цепях с низким напряжением, поскольку это снижает риск того, что вы можете повторно использовать оставшийся симистор в своем следующем проекте, который может использовать сетевое напряжение.

    Если вы когда-нибудь обнаружите, что работаете с оборудованием, разработанным кем-то другим, никогда не предполагайте, что они используют изолированные компоненты, и всегда предполагайте, что любой компонент может быть под напряжением, пока не будет доказано обратное.

    Тестирование портативных устройств (PAT)

    Тестирование портативных устройств — это способ тестирования электрического оборудования, чтобы убедиться, что оно безопасно в использовании. Он включает в себя физическую проверку на наличие видимых повреждений, а также некоторые тесты для проверки правильности заземления и изоляции оборудования.Это делается либо с помощью специального тестера PAT, либо с помощью тестера изоляции. К сожалению, стоимость испытательного оборудования PAT делает это очень трудным для электронщика, увлеченного своим хобби, самим проводить испытания, но вы можете найти местного электрика, который сможет проверить это оборудование за вас.

    Опасность пожара и взрыва

    Удар электрическим током — не единственный способ, которым вы можете пострадать из-за неправильного использования электричества. Возгорание может быть столь же опасным и может произойти при гораздо более низком напряжении, чем поражение электрическим током.Опять же, это высокий риск для сетевого электричества, но вы также должны учитывать это при работе с системами более низкого напряжения, такими как автомобильные или развлекательные аккумуляторы или низковольтное освещение, все из которых способны обеспечивать очень высокие токи. Возгорание может быть вызвано перегревом из-за перегрузки штепсельной розетки или слишком сильного тока, протекающего через определенный компонент или провод.

    Используйте правильный предохранитель

    Важным шагом на пути к защите от пожара является использование предохранителя правильного размера.В самодельных проектах следует выбирать предохранитель, расположенный выше, но как можно ближе к максимальному току, который будет потреблять цепь.

    Другой фактор, контролируемый проектировщиком схемы, — это обеспечение того, чтобы все компоненты и кабели были рассчитаны в пределах, превышающих максимальное потребление тока для схемы. Это не должно быть проблемой для слаботочных сигналов в типичной цепи, но это необходимо учитывать при переключении больших нагрузок, таких как освещение, двигатели и т. Д.

    Также убедитесь, что все горячие предметы хранятся вдали от легковоспламеняющихся материалов. Одним из примеров является обеспечение того, чтобы осветительная арматура не контактировала напрямую с занавесками, которые иногда могут продуваться сквозняком через открытое окно.

    Бернс

    Очевидно, что существует риск ожога во время пайки, но существует также риск прикосновения к компоненту после его нагрева. Светильники хорошо известны своим нагревом, но другие компоненты, такие как тиристоры и симисторы, которые переключают большие нагрузки, также могут вызвать ожоги при прикосновении.

    Опасные инструменты

    Всегда читайте предупреждающие инструкции, прилагаемые к инструментам. Я особенно думаю о металлообрабатывающих инструментах, используемых при создании дома для вашего нового творения, но вы также можете использовать электроинструменты в самой цепи, такие как вращающиеся инструменты и тепловые пушки, используемые с термоусадочной изоляцией.

    Помните, что предупреждения есть не просто так. Возможно, вы просверлили сотни отверстий с помощью электродрели, но первый металлический осколок в глазу может навсегда повредить ваше зрение.Всегда надевайте защитные очки / перчатки, если это указано в инструкции.

    Опасные химические вещества

    Если вы собираетесь изготавливать свои собственные печатные платы, то существуют опасные химические вещества, с которыми необходимо обращаться осторожно, а также утилизировать безопасным способом, чтобы не нанести вред местной дикой природе. Всегда читайте инструкции, прилагаемые к вашим химическим веществам, и обращайтесь к своему поставщику, если у вас есть какие-либо сомнения относительно рисков и способов их надлежащей утилизации.

    Есть еще

    Это руководство должно дать вам хорошее начало, но могут быть и другие вещи, которые я пропустил, или различия с различными электрическими системами в других странах. Если вы считаете, что нужно добавить что-нибудь еще, дайте мне знать.

    HSE устанавливает правовые рамки для тех, кто работает с электричеством на работе, что также полезно для всех, кто занимается этим для хобби. См. Разделы «Электробезопасность и вы» и Часто задаваемые вопросы по HSE по электричеству.

    Вам также следует следовать советам на следующих веб-сайтах:

    Высокое и нестабильное сетевое напряжение

    Высокое и нестабильное сетевое напряжение

    Высококачественная бытовая техника и другая бытовая электроника требуют более высокого запаса по напряжению в регионах с нестабильными электросетями, в тропических регионах с частыми ударами молний или в районах, где преобладают высокоэнергетические кольцевые волны и скачки напряжения.Например, производители оригинального оборудования, работающие на растущем рынке высококачественных потребительских товаров в Индии без такой наценки, могут страдать от непрерывного потока электрически поврежденных и возвращенных товаров, которые необходимо обслуживать или заменять.

    Power Integrations предлагает полный спектр интегральных схем автономных коммутаторов, включающих первичные МОП-транзисторы на 900 В, обеспечивающих эффективную и недорогую защиту, существенное сокращение эксплуатационных расходов и затрат на поддержку продукта.

    Эти высокоинтегрированные устройства на 900 В позволяют инженерам-конструкторам реализовать поистине универсальный источник питания, отвечающий ожиданиям пользователей по надежности во всем мире.Они также могут заменить соответствующие переключатели 725 В в существующих конструкциях плат для поддержки более высоких напряжений без изменения конструкции.

    Эталонные образцы

    Рекомендуемые семейства продуктов

    904
    IC Продукт
    Семейство
    Типовая схема
    Конфигурация
    Мощность / ток
    Номинальные характеристики
    Описание
    LinkSwitch-TN20 LinkSwitch-TN20 Высокоэнергетическая микросхема автономного коммутатора со встроенным полевым МОП-транзистором 725 В / 900 В и защитой на уровне системы
    LinkSwitch-XT2 Обратный ход До 9 Вт Энергоэффективный автономный коммутатор с низким энергопотреблением Со встроенным полевым МОП-транзистором 725 В / 900 В и защитой на уровне системы
    InnoSwitch4-EP Обратный ход 10–45 Вт ИС обратного переключателя CV / CC QR Off-Line со встроенным полевым МОП-транзистором 725 В / 900 В, синхронный Исправление и обратная связь с FluxLink

    Обратитесь к местному торговому представителю или дистрибьютору Power Integrations для оказания помощи.

    перевод уставок сетевого напряжения Французский | Англо-французский словарь

    Сеть питания: однофазное 230/400 В переменного тока, через перемычку для установки напряжения, 50/60 Гц через перемычку выбора (двухпозиционный переключатель). Устройство для питания: монофазное 230 / 400VCA с изменением напряжения по частям, 50/60 Гц с переключением двухпозиционного переключателя.
    Высокое и низкое напряжение — подходящие галогенные лампы и лампы для любого применения Лампы сетевого напряжения (230 В) — идеальная замена обычным лампам накаливания в частных помещениях. Высокое напряжение и низкое напряжение — галогенные лампы и адаптируемые ампулы для защиты от напряжений (230 В), составляющие не заменяющие идеальные лампы и классические лампы накаливания в привилегированных условиях окружающей среды.
    Значение настройки напряжения можно изменить. Валютное определение натяжения, которое должно быть изменено.
    Оптимальная настройка напряжения выбирается и используется для последующих сканирований. Оптимальное регулирование натяжения выбрано и используется для элементов выметания.
    На нагревательные элементы поступает напряжение сети через симисторы, управляемые микроконтроллером. Les éléments de chauffage reçoivent la voltage du réseau par l’intermédiaire de triacs commandés par un microcontrôleur.
    Основное напряжение Vlink обнаруживается схемой обнаружения основного напряжения (S2), и значение Vlink1, соответствующее основному напряжению, используется в качестве этого основного напряжения Vlink обнаружения (S4). Une liaison T de Voltage Principale является детектируемым по цепи обнаружения главного напряжения (S2) и не имеет связи T1, который соответствует главному напряжению и используется, как T detection Principale (S4).

    Математическая задача: напряжение сети — математическая задача (25041), единицы, преобразование единиц

    Сколько электрического тока проходит через прибор с сопротивлением 40 кОм, подключенный к сетевому напряжению (230 В)?

    Правильный результат:

    Мы будем рады, если вы обнаружите ошибку в словах, орфографические ошибки или неточности и отправите их нам.Спасибо!

    Спасибо за отправку примера исправления текста или перефазировки. Вскоре мы рассмотрим этот пример и поработаем над его публикацией.


    Чтобы решить эту математическую задачу, вам необходимо знать следующие знания:

    Следующие аналогичные математические задачи:

    • Замкнутый контур
      В замкнутом контуре есть источник напряжения с U1 = 12 В и внутренним сопротивлением R1 = 0,2 Ом. Внешнее сопротивление R2 = 19.8 Ом. Определите электрический ток и напряжение на клеммах.
    • Сопротивление
      Определите сопротивление лампы при токе 200 мА и в штатной лампе (230В).
    • Самое низкое напряжение
      Три резистора с резисторами R1 = 10 кОм, R2 = 20 кОм, R3 = 30 кОм включены последовательно и к ним подключено внешнее напряжение U = 30 В. На каком резисторе самое низкое напряжение?
    • Нить лампы накаливания
      Нить накала лампы имеет удельное сопротивление 1 Ом и подключена к напряжению 220 В.Сколько электрического заряда пройдет через волокно, если электрический ток пройдет в течение 10 секунд?
    • Эффективное и среднее напряжение
      Делитель напряжения, состоящий из резисторов R1 = 103000 Ом и R2 = 197000 Ом, подключен к идеальному источнику синусоидального напряжения, R2 подключен к вольтметру, который измеряет среднее напряжение и имеет внутреннее сопротивление R3 = 200300 Ом, измеренное значение i
    • Два резистора
      Два резистора 20 Ом и 60 Ом включены последовательно и к ним подключено внешнее напряжение 400 В.Какое электрическое напряжение на соответствующих резисторах? Прокомментируйте, пожалуйста!
    • Ток в проводнике
      Вычислите ток в проводе (в мА), если он подключен к источнику напряжения 4,5 В и его сопротивление составляет 20 (Ом).
    • Плита
      Через погружную плиту проходит ток 2А при напряжении 230В. Какую работу совершает электрическое поле за 2 минуты?
    • Электротехнические работы
      Рассчитайте работу, совершаемую электрическими силами, пропускающими ток 0.2 А через лампочку за 10 минут, если лампочка подключена к источнику питания 230 В.
    • Входная электрическая мощность
      Решите проблемы, связанные с электроснабжением: а) U = 120 В, I = 0,5 А, P =? б) P = 200 Вт, U = 230 В, I =? в) I = 5 А, P = 2200 Вт, U =?
    • Колба
      Какое сопротивление у лампы накаливания, когда она подключена к батарее 9 В и имеет ток 120 мА?
    • Резисторы
      Два резистора, соединенных последовательно, дают результирующее сопротивление 65 Ом и 10,4 Ом параллельно.

Добавить комментарий