Радиаторы отопления алюминиевые расчет по площади: Страница не найдена – Системы отопления

Содержание

Расчет количества секций алюминиевых радиаторов отопления

В данный момент заявку на расчет отопления Вы сможете отправить на
Email: [email protected]

Необходимые данные для проведения расчета:
  • Кол-во кв/м.
  • Количество этажей в доме
  • Ваш этаж
  • Угловая квартира? (Да/Нет)
  • Вид радиаторов отопления (Биметалл, Алюминий, Чугун, Вакуумный, Стальной — конвектор, др.)
  • Модель дома (монолитный/панельный/кирпичный/блочный/др..)
  • Наличие балкона и утеплен ли он?
  • Высота подоконников
  • Высота потолков
  • Кол-во комнат (подкрепить планом или схемой квартиры во вложении для наглядности)
  • Кол-во окон (подкрепить планом или схемой квартиры во вложении для наглядности)
  • Самая низкая температура в зимнее время +- 10 C
  • Наличие навесного потолка (Да/Нет)
  • Ваше ФИО
  • Ваш телефон (для уточнения возможных деталей при расчетах, укажите удобное для Вас время звонка по Москве)

Расчет производится в течении 1-2 дней, т. к. загрузка наших инженеров очень большая!

Результаты расчета и советы по построению отопления отправляются в ответ на запрос, на Ваш Email!

Расчет мы производим совершенно бесплатно! В замен просим рассказать о нас Вашим друзьям в социальных сетях!

Спасибо!

Получить профессиональный расчет радиаторов отопления БЕСПЛАТНО!

Отправить заявку для расчета радиаторов отопления профессионалами, расчет абсолютно БЕСПЛАТНЫЙ!

От вас требуется сообщить параметры вашей квартиры:

  • Кол-во кв/м.
  • Количество этажей в доме
  • Ваш этаж
  • Угловая квартира? (Да/Нет)

ОТПРАВИТЬ ЗАЯВКУ

Расчет алюминиевых радиаторов — это очень важная задача, с которой на отлично справится наш онлайн калькулятор. Тут вы сможете произвести достаточно качественный и точный расчет секций алюминиевых радиаторов отопления требуемых для обогрева нужной вам площади.

Видео с примером расчета секций алюминиевого радиатора

В данном случае мы рассмотрим только расчет количества алюминиевых радиаторов т. к. они в последнее время получают все большую популярность среди населения, их неоспоримыми преимуществами является высокая теплоотдача, быстрый нагрев и удобная терморегуляция, удобство монтажа из-за небольшого веса и невысокая стоимость по фсравнению с другими видами радиаторов отопления.

Для точного расчет алюминиевых радиаторов отопления вам нужно заполнить все дополнительные параметры, не стоит ими пренебрегать!

Расчет количества алюминиевых радиаторов ведется по формуле схожей с расчетом других радиаторов, тут вся соль в мощности одной секции, для расчета при нестандартной мощности, вы можете полученное значение «Требуемая мощность» разделить на мощьность одной секции, что даст вам нужное количество секций алюминиевых радиаторов отопления для вашего жилого помещения.

Расчет секций алюминиевых радиаторов отопления

Каждый дом оснащён радиатором отопления. На постсоветском пространстве  самые распространённые батареи – чугунные. Своё широкое распространение такие батареи получили благодаря долговечности. Однако со временем секции батареи забиваются ржавчиной и попавшим в систему отопления илом и мусором, что в свою очередь приводит к ухудшению теплоотдачи. Но на сегодняшний день ситуация кардинально изменилась благодаря  альтернативе в виде биметаллических и алюминиевых радиаторов отопления. Они обладают повышенной стойкостью к коррозии и высокой теплоотдачей, при этом имея небольшие размеры.

Отличительной характеристикой алюминиевого радиатора является наличие большого проходного сечения канала секции, а также наличие специального эпоксидного покрытия, которое защищает алюминий от коррозии.

 


Отличные характеристики и высокое качество алюминиевых радиаторов достигаются благодаря:

  • использованию высококачественного алюминия;
  • применению автоматизированной системе производства;
  • контрольной проверкой при избыточном давлении.

Благодаря такой технологии производства теплоотдача алюминиевых радиаторов на 10-12% выше чугунных.

Расчёт мощности

Ниже приведена таблица изменения показателей мощности радиатора в зависимости от теплового напора.

tz и tp — соответственно начальная и конечная температура теплоносителя (на входе и выходе) в отопительном приборе, °С;

ti — температура помещения, °С

Кол-во секций радиатора
 

tz/tp/ti, °С
 

Теплоотдача

РАП 300

РАП 500

3

90/70/20
75/65/20

302,1
238,2

463,2
365,4

4

90/70/20
75/65/20

402,8
317,6

617,6
487,2

5

90/70/20
75/65/20

503,5
397,0

772,0
609,0

6

90/70/20
75/65/20

604,2
476,4

926,4
730,8

7

90/70/20
75/65/20

704,9
555,8

1080,8
852,6

8

90/70/20
75/65/20

805,6
635,2

1235,2
974,4

9

90/70/20
75/65/20

906,3
714,6

1389,6
1096,2

10

90/70/20
75/65/20

1007,0
794,0

1544,0
1218,0

11

90/70/20
75/65/20

1107,7

873,4

1698,4
1339,8

12

90/70/20
75/65/20

1208,4
952,8

1852,8
1461,6

13

90/70/20
75/65/20

1309,1
1032,1

2007,2
1583,4

14

90/70/20
75/65/20

1409,8
1111,6

2161,6
1705,2

15

90/70/20
75/65/20

1510,5
1191,0

2316,0
1827,0

16

90/70/20
75/65/20

1611,2
1270,4

2470,4
1948,8

При расчёте мощности радиатора не важен его вид. Важен только один показатель – мощность самого радиатора (секции). При покупке радиатора всегда можно узнать этот параметр. В случае отсутствия показателей мощности, можно определить через интернет, зная модель радиатора.

Далее для определения мощности необходимоопределить площадь помещения, которое планируется обогревать.

Формула для расчёта мощности радиатора довольно таки проста. Требуемая мощность берётся из расчёта 100 Ватт на 1квадратный метр при высоте потолка 2,7 метра. Исходя из этого, получается следующая формула:

K=S×100/P,

где

K – количество секций радиатора;
S – площадь обогреваемого помещения;
P – мощность радиатора (секции).

Например: необходимо рассчитать число секций радиатора для комнаты площадью в 30 квадратных метров. Мощность секции составляет 200 Ватт. Исходя из условия, имеем S=30, P=200. Подставив данные в формулу, получаем

K=30×100/200
K=15 секций

При расчёте мощности радиатора необходимо учитывать разные случайные факторы. Исходи из этого лучше всего покупать радиатор с 20% запасом от рассчитываемого показателя. Таким образом, для выше указанного примера с учётом запаса количество секций будет равняться 18.

Как рассчитать мощность и количество секций алюминиевых радиаторов

Наиболее простой расчет количества секций алюминиевых радиаторов осуществляется по площади помещения. Этот метод предусматривает использование нормы тепла на 1 м². Она равна 100 Вт. Этот метод нужно применять только для комнат, высота которых не будет больше 3 м.

Если же помещение частного дома выше, можно пойти двумя путями:

  1. Использовать другой метод.
  2. Воспользоваться специальными коэффициентами, которые были разработаны для расчета мощности радиатора по площади.

Корректировка нормы в зависимости от высоты

Для этого ее умножают на один из коэффициентов:

  • 1,05 – если потолок имеет высоту, равную 3 м;
  • 1,1 – в случае высоты потолка, равной 3,5 м;
  • 1,15 – если стена имеет высоту, равную 4 м;
  • 1,2 – стенка является 4,5-метровой.

Общая формула расчета количества секций

Qc = S x 100 x k / Р, где

  • S является площадью комнаты;
  • k представляет собой корректирующий коэффициент нормы 100 Вт/м²;
  • Р является мощностью одной секции.

Произведение S x 100 x k является приблизительным количеством тепла, которое должен создать радиатор отопления.

Расчет количества тепла, нужного для обогрева

Чтобы его рассчитать нужно, использовать формулу:

Ру = S x 100 x k х k1 х k2 х k3 х k4 х k5 х k6,

где k1 определяет степень влияния вида остекления на утечку тепла. Его величина может быть такой:

  1. 0,85 – если в окнах стоит тройной стеклопакет;
  2. 1 – если окна имеют двойной стеклопакет;
  3. 1,27 – когда стоит одинарное стекло.

k2 является показателем, определяющим влияние площади окон на утечку тепла. Для расчета берут такие его значения:

  1. 0,8 – когда площадь окон составляет 10 часть площади пола;
  2. 0,9 – когда соотношение составляет 20%;
  3. 1,1 – когда соотношение равно 30%;
  4. 1,2 – когда соотношение равняется 40%.

k3 демонстрирует влияние количества наружных стен на уход тепла. Имеет следующие значения:

  1. 1,1 – для комнат с 1 внешней стеной;
  2. 1,2 – если есть 2 наружные стенки;
  3. 1,3 – для помещений с 2 внешними стенами;
  4. 1,4 – для 4 внешних стенок.

k4 характеризует то, как убегает тепло через стены в зависимости от теплоизоляции. Его величина может быть такой:

  1. 0,85 – для комнат с очень хорошей теплоизоляцией;
  2. 1 – для нормально утепленных стенок;
  3. 1,27 – для плохо утепленных комнат.

k5 определяет уровень влияния помещения дома, расположенного этажом выше. Этот коэффициент такой:

  1. 0,8 – если сверху находится обычная отапливаемая комната;
  2. 0,9 – в случае наличия чердака с отоплением;
  3. 1 – если чердак без отопления.

k6 представляет собой показатель, который демонстрирует влияние температуры воздуха за окном. Он может быть таким:

  1. 0,7 для t = -10 °C;
  2. 0,9 для t = -15 °C;
  3. 1,1 для t = -20 °C;
  4. 1,3 для t = -25 °C;
  5. 1,5 для t = -30 °C.

Мощность секции алюминиевого радиатора

В формулу расчета числа секций можно подставлять ту мощность, которую производитель указал в технической документации. Это правильно, когда в отопительной системе циркулирует теплоноситель с температурой 100 °С, и он охлаждается до 80 °С. Производители указывают теплоотдачу батареи при условии ΔТ = 70 °С. Этот показатель они рассчитали исходя из формулы:

ΔТ = (t1 + t2) / 2 – t3, где

  • t1 представляет температуру теплоносителя на входе,
  • t2 является температурой теплоносителя на выходе,
  • t3 представляет собой температуру помещения дома.

ΔТ = 70 °С только тогда, когда теплоноситель имеет вышеуказанные уровни температуры и t3 = 20 °С.

Такой теплоноситель практически никогда не циркулирует в индивидуальных системах отопления и центральных отопительных системах. Всегда следует узнавать правильную мощность секции батареи. Для этого нужно рассчитать ΔТ, используя показатели своей системы отопления.

После чего берут специальную табличку, в которой производитель указал теплоотдачу радиатора при различных ΔТ, и ищут полученный показатель. Возле него находится корректирующий коэффициент. Например, для ΔТ = 50 ° С он составляет 0,65. Эту цифру умножают на мощность секции батареи. Далее полученный результат можно подставлять в указанную в самом начале формулу.

Как подключить стальной радиаторо отопления, схемы подключения

Перед покупкой и установкой секционных радиаторов отопления (как правило это алюминиевые и биметаллические) у многих возникает вопрос — какое количество секций должно быть в радиаторе и как рассчитать это количество.

Более правильным, всегда будет расчет теплопотерь помещения. Однако в нем используется такое количество коэффициентов, что в результате может получиться, что-то завышенное или наоборот. Поэтому в большинстве случаев пользуются упрощенными способами.

Некоторые ЖЭКи не разрешают самостоятельно рассчитывать количество секций, и делают это для жителей на коммерческой основе. Это связано с тем, что дома во первых новые, и нельзя нарушать балансировку системы, а во вторых при регулировании температуры теплоносителя мощность радиатора сильно меняется. А если в новом доме температура теплоносителя, даже в самые холода, не превышает 70 °С, то стандартный расчет в данном случае не подходит.

Стандартный расчет для многоэтажного дома

Согласно «Строительным нормам и правилам» для компенсации теплопотерь пощения, на один квадратный метр площади требуется 100 Вт мощности радиатора отопления.

Этот расчет справедлив для любых радиаторов, в том числе алюминиевых и биметаллических.

В таком варианте требуемое количество секций вычисляется по формуле:

N = S*100/P, где S = площадь помещения, P = мощность одной секции радиатора отопления.

Пример, мощность одной секции радиатора GLOBAL STYLE PLUS 500 равняется 185 Вт, а площадь комнаты — 20 м.кв., в таком случае:

N=20*100/185=10,8.

Принимаем округление в большую сторону, и получаем 11 секций биметаллического радиатора GLOBAL STYLE PLUS 500.

Для высотных домов, часто пользуется еще более простым методом — делят площадь помещения на 2, и получают необходимое количество секций. В нашем примере их бы получилось 10. Но это не значит, что люди будут замерзать. В высотном доме соседи греют друг друга, и в реальной жизни 100 Вт на метр квадратный даже много.

Для торцевых и угловых комнат желательно ввести добавочный коэффициент 1,1 — 1,2, в этом случае необходимое количество секций для 20 метровой комнаты составит 12-13.

Характеристики радиатора GLOBAL STYLE PLUS 500

Зависимость мощности радиатора от теплового потока

Как видно из таблицы, при температурном напоре 70 °С мощность радиатора 185 Вт, при 50 — 114 Вт.

Температурный напор в 70 °С можно создать только в центральной системе отопления со стальными трубами, в частном же доме с пластиковым трубопроводом и настенным котлом, максимальный напор составляет 50 °С. Поэтому упрощенная формула «1 секция радиатора на 2 кв. метра» в частном доме не подходит.

Если же у вас в частном доме радиаторы посчитаны по упрощенной формуле, зимой при продолжительных низких температурах за окном (от -25 °С) в доме может быть прохладно.

Расчет количества секций в частном загородном доме

Если для квартир в многоэтажном доме, действует правило — на один квадратный метр площади требуется 100 Вт мощности радиатора отопления, то для частного дома не совсем так.

Для первого отапливаемого этажа эта мощность составляет 110 — 120 Вт (в зависимости от утепления пола), для второго и следующих этажей эта мощность составляет примерно 80 — 90 Вт. Поэтому многоэтажные дома всегда более экономичны (тепло поднимается на верх).

Тогда, для расчета количества секций радиаторов в частном доме, в формуле N = S*100/P, вместо 100 необходимо подставлять соответствующую мощность (120-80 Вт).

Наш совет — в частный дом лучше взять чуть больше секций (с запасом), это не значит, что от этого у вас в доме будет жарко, просто, как видно из рисунка выше, чем шире радиатор, тем меньше температуру нужно подавать на радиатор. Чем ниже температура теплоносителя — тем дольше прослужит вся система — и трубы и сам котел.

Как рассчитать количество секций радиаторов отопления в квартиру или частный дом

Один из самых важных вопросов при обеспечении комфортных условий проживания в жилом помещении круглый год – это сбалансированная и правильно просчитанная по мощности отопительная система. Стандартная схема: контур центрального отопления или автономное оборудование с радиаторами, в качестве основных приборов отопления. Многие при выполнении ремонта или возведении нового дома поверхностно относятся к организации тепла в доме, выбирая для больших комнат просто более массивные радиаторы. Однако для комфортного микроклимата и защиты от самых серьезных морозов необходимо учитывать массу параметров, включая теплоотдачу радиаторов, площадь помещения, планировку и т. д. Именно потому часто наши клиенты спрашивают, сколько секций алюминиевого или биметаллического радиатора ставить, чтобы в помещениях было по-настоящему тепло и комфортно.

Влияние типов радиатора на отопительную систему

Все технологические расчеты основываются на СНиП и должны выполняться специалистами в виду их сложности. Однако расчет количества секций на площадь отапливаемого помещения можно осуществить самостоятельно, если правильно учесть несколько наиболее важных нюансов. Конечно, начинать расчет секций следует, исходя из типа используемых радиаторов, поскольку их характеристики и теплоотдача существенно отличаются.

Рассчет кол-ва секций алюминиевого радиатора


Легкие, эстетичные, экономичные алюминиевые радиаторы на сегодня являются наиболее востребованными при обустройстве автономных систем отопления. Теплоотдача секции алюминиевого радиатора достигает 190 Вт, при значительно меньшей емкости относительно чугунных аналогов (0,5 л против 1-1,4 л, в зависимости от того, какая высота секционного радиатора).

Стандартный метод расчета на 1 м.кв. 100 Вт. алюминиевого радиатора.
1 секция дает 160-190 Вт.

Пример: на комнату 15 м.кв.*100Вт=1500 Вт./190Вт. (одна секция) = 7,8 секций радиатора необходимо для комнаты 15 м.кв.

На нашем сайте в каждом товар уже существует калькулятор, с выбранным количеством секций и сразу же отображаются размеры конкретного радиатор, теплоотдача и обогреваемая площадь.

Также, вы можете напрямую задать в наших фильтрах нужную площадь помещения, и сайт вам автоматически выдаст необходимые радиаторы с нужным количеством секций.

     

 

Расчет кол-ва секций биметаллического радиатора


Такие типы радиаторов сочетают лучшие качества обоих конкурентов. Внутренняя поверхность радиатора выполнена из стали, что делает их невероятно надежными, стойкими к коррозии, перепадам давления и высоким температурам. А алюминиевый наружный слой увеличивает теплоотдачу. Выполняя расчет количества секций биметаллического радиатора, учитывайте, что теплоотдача одной достигает рекордных 200 Вт. Стальная часть радиатора выполнена из антикоррозийного сплава, как и соединительные муфты. Алюминиевые части не соприкасаются с теплоносителем, благодаря чему биметаллические радиаторы – рекордсмены по стойкости к коррозии, долговечности и надежности.

Расчет берется из показателя 80 Вт на 1 м.кв. Если ваше помещение 22 м.кв. то расчет такой:

22 (м.кв.) * 80 (Вт на секцию) =1760 Вт необходимо для обогрева помещения.

В среднем одна секция батареи отдает 180 Вт. 1760/180=9,77 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 10 секций радиатора.

Расчет кол-ва секций чугунного радиатора


Именно такие тепловые устройства знакомы большинству жителей постсоветских стран. Это массивные и тяжелые устройства, которые в большинстве случаев не отличаются изящным дизайном, но имеют хорошую теплоотдачу и долго удерживают тепло. Выполняя расчет чугунных батарей отопления, учитывайте, что одна секция радиатора старого образца обеспечивает теплоотдачу в 160 Вт. Максимальное количество секций в нем не ограничено, что допускает монтаж в помещении любой площади и конфигурации. Свойства чугуна обеспечивают высокую теплоемкость батареи и длительную отдачу тепла:

  • Монтаж такого оборудования требует обустройства надежных и прочных крепежей, а из-за большого объема увеличивается расход энергии.
  • Толстые стенки из чугуна устойчивы к коррозийному воздействию, механическим ударам. Потому данные устройства подходят для комплектации как центральных, так и автономных систем, что несколько упрощает подбор и расчет теплоотдачи радиатора.
  • Об эстетической стороне вопроса переживать не стоит, современные модификации чугунных батарей выглядят не хуже аналогов.
  • Чугунные батареи при правильном монтаже и уплотнении соединений не боятся гидроударов, перепадов температур и контакта с низкокачественным теплоносителем.

 

Основные способы расчета


Чтобы в квартире или доме было по-настоящему тепло, следует обязательно учитывать другие внешние факторы, включая уровень теплоизоляции в помещении, количество окон и дверей и т. д. Однако наиболее простым способом определить, какая батарея отопления нужна, считается расчет по габаритам помещения.

Метод №1. По площади

По старым сантехническим стандартам: 100 Вт на 1 м2 жилой площади.

По новым нормам, с учетом стандартов утепления: 80 Вт на 1 м2 жилой площади.

Исходя из этого берут 1 секцию радиатора на 2 квадрата. Более точный расчет можно получить, если учитывать теплоотдачу секции.

Пример:

Для комнаты в 12 м2 при установке алюминиевых радиаторов формула расчета будет следующей:

По старым нормам: 12 м. кв.*100 Вт = 1200 Вт

По новым нормам: 12м. кв.*80 Вт = 960 Вт

К примеру одна секция радиатора отдает 186 Вт.

По старым нормам: 1200/186=6,46 секций нам необходимо. Рекомендуем брать в большую сторону, тоесть 7 секций.

По новым нормам: 960/186=5,17 секций нам необходимо. Рекомендуем брать в большую сторону, тоесть 6 секций.

Расчет количества секций для частного дома


Для частного дома расчитывается кол-во секций аналогично как и для квартиры. В среднем, если не углублятся в качество утепления, то берутся номинальные значения нормы, 80-100 Вт. на 1 м.кв. Если же утепление сделано не должным образом, согласно принятых стандартов, то и показатель ватности на метр квадратный будет другой.

Расчет количества секций для квартиры


Для квартиры все предельно просто, в условиях сегодняшнего энерго сбережения и качественного утепления фасадов зданий.

Для новостроек: Расчет берется из показателя 80 Вт на 1 м. кв. Тоесть если ваша комната 17 м.кв. то расчет такой:

17*80=1360 Вт необходимо для обогрева помещения.

В среднем одна секция батареи отдает 180 Вт. 1360/180=7,55 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 8 секций радиатора.

Для старого жилого фонда: Расчет берется из показателя 100 Вт на 1 м.кв.

Что учитывать еще?

Стандартные формулы актуальны для просчета теплоотдачи радиаторов в условиях умеренного климата со средним уровнем утепления стен. Для получения более точных результатов стоит брать во внимание следующие параметры:

  • Если комната угловая, то полученный результат рекомендуется умножить на 1,3.
  • Добавить к полученному значению коэффициент климатической зоны. Украина целиком находится в умеренной климатической зоне, но для северных регионов рекомендуется использовать коэффициент 1,3-1,6.
  • Условно за каждое дополнительное окно следует добавлять 100 Вт, а дверь – 200 Вт.
  • Для частных домов используют коэффициент 1,5, чтобы компенсировать потери тепла от холодных подвальных помещений и чердака.

Используя наш калькулятор расчета количества секций радиаторов отопления, вы сможете быстро определить нужную конфигурацию. Для подробной консультации и грамотного подбора отопительного оборудования обращайтесь к специалистам.

Теплоотдача алюминиевых радиаторов, расчет количества секций и мощность батарей

При выборе отопительного прибора для жилого помещения необходимо учесть целый ряд технических показателей. Важной задачей при покупке радиатора является обеспечение комфортной температуры в рабочем пространстве при любых колебаниях погодных условий. За это отвечает один из главных параметров радиаторов отопления – тепловая мощность.

Теплоотдача и мощность

Эти две характеристики алюминиевых радиаторов практически всегда приводятся, как идентичные величины и во многих статьях используются, как синонимы. Вместе с тем, каждая из них все же имеет свои нюансы, которые вытекают из их физического определения:

  • Теплоотдача – это термодинамический процесс, который заключается в передаче тепла от твердого тела (поверхности радиатора) в окружающую среду через теплоноситель;

    Происходит двумя способами – конвекцией и излучением. У алюминиевого прибора отопления соотношение конвекции и излучения составляет примерно 50:50

  • Мощность – физическая величина, которая показывает, сколько тепла в единицу времени может произвести то или иное устройство. Чем мощнее радиатор, тем большую площадь он может обогреть.
Установленный в квартире алюминиевый радиатор

Фактически алюминиевый радиатор производит полезную работу по обогреву определенной площади, которая зависит от его мощности, за счет явления теплоотдачи. Обе обсуждаемые величины измеряются в ваттах (Вт) или киловаттах (кВт) и часто отождествляются. Хотя более правильно было бы оперировать понятием мощность, которое определяет количество передаваемой энергии, а не сам процесс передачи. Мы будем употреблять оба выражения, согласно сложившейся в последнее время практике.

Как рассчитать мощность радиатора

На эту тему существует масса статей и обзоров в интернете. Довольно часто обсуждался этот вопрос и на страницах нашего сайта. Поэтому здесь мы приведем лишь самые основные формулы, позволяющие произвести необходимый расчет. Различные методы определяют значение мощности, необходимой обогрева заданной площади, в зависимости от учета тех или иных параметров помещения:

  1. Продольные размеры. Зная длину и ширину, можно рассчитать площадь комнаты. Согласно строительным нормам, для отопления 10 м2 стандартно утепленного помещения требуется теплоотдача в 1 кВт. Соответственно, полную мощность алюминиевого радиатора в киловаттах можно рассчитать, разделив площадь на 10;
  2. Объем. Более точный расчет получается при учете третьего измерения – высоты потолков. В этом случае также применяется заданное в СНиП значение – 41 Вт на 1 м3. Таким образом, требуемая теплоотдача радиатора в ваттах будет равна объему, умноженному на 41;
  3. Конструкционные особенности помещения. Фактически это тоже расчет, за основу которого взят объем, но с некоторыми уточнениями. Так, например, для каждой двери необходимо добавить к полученному значению 0,1 кВт, а для окна – 0,2 кВт. При расположении комнаты в углу здания умножаем мощность на 1,3, а для частного дома – на 1,5, чтобы учесть утечку тепла через пол и крышу.

    Кроме того, в приведенные формулы необходимо вводить поправочные коэффициенты, учитывающие географическое положение рассматриваемого объекта

  4. Комплексный учет всех факторов: толщины утепления, количества окон, материала полов и потолка, наличия или отсутствия естественной вентиляции. Такие методы довольно сложны, полный объем вычислений выполняется лишь специалистами при необходимости проведения точного расчета системы отопления.
Приблизительный расчет количества секций алюминиевых радиаторов на комнату

Определение требуемой мощности является предварительной стадией расчета алюминиевых радиаторов. Далее обычно следует расчет количества секций, необходимого для обеспечения этой мощности.

Считаем количество секций

На этом этапе все, казалось бы, довольно просто: если известна общая теплоотдача, то разделив ее на паспортную мощность одной секции, мы легко получим необходимое значение количества секций радиатора.

Но эта простота является довольно обманчивой: для не очень хорошо разбирающегося в тонкостях пользователя этот расчет может стать источником серьезных ошибок:

  • Если у вас в результате получилось дробное число, его надо обязательно округлять в большую сторону;
  • Паспортная теплоотдача алюминиевых радиаторов обычно приводится для значения теплового напора 60° С (это значит, что теплоноситель имеет рабочую температуру  90° С). Однако в реальности в частных домах устанавливают системы отопления, рассчитанные на меньшее значение напора. Поэтому перед применением формул эффективную мощность необходимо пересчитать;

    Теплоноситель в современных домах обычно нагревается до меньших температур, поэтому эффективная мощность секции становится ниже, а самих секций требуется больше

  • Мощность радиатора зависит от схемы его подключения к системе. Для больших радиаторов (12 секций и более) оптимальным является диагональный способ, для менее протяженных батарей лучше использовать боковую схему.

Р

Различные варианты расположения радиатора и сопутствующие теплопотери

асчет количества секций алюминиевых радиаторов является одной из наиболее ответственных операций при проектировании всей системы отопления. От правильности его выполнения напрямую зависит комфорт и уют в доме в самую ненастную погоду.

Практический пример

Любые, даже самые простые способы расчета можно понять намного быстрее, если изучать их на конкретном примере.

Допустим, нам нужно рассчитать радиатор для небольшой комнаты, имеющей размеры 4,2х5 м, высоту потолков 3,3 м, два окна и входную дверь. Комната находится внутри дома, т. е. угловых стен в ней нет. Применим все описанные выше методы по очереди:

  1. Площадь помещения равна 5*4,2=21 м2. Значит требуемая мощность радиатора, рассчитанная по первому способу, равна 21/10=2,1 кВт;
  2. Объем комнаты равен ее площади, умноженной на высоту, т. е. 21*3,3=69,3 м3. Тогда теплоотдача по объемному методу составит 69,3*41=2,84 кВт. Нетрудно заметить, что полученная величина превышает полученное первым способом значение почти на 1 кВт;
  3. Дальнейшие поправки лишь еще более увеличивают эту разницу. Так, два окна и дверь добавят к мощности алюминиевых радиаторов еще 0,4 кВт, а при учете поправочного коэффициента на частный дом необходимая мощность достигнет почти 5 кВт.

Алюминиевые радиаторы обычно имеют секции мощностью около 200 Вт при напоре 60° С. Если теплоноситель в вашей системе имеет такие же параметры теплового напора, то, по разным оценкам, вам потребуется от 11 до 25 секций. При таком разбросе окончательное значение необходимо вычислить, применяя более точные методы.

Если число секций получится больше 12, имеет смысл применять не 1, а 2 радиатора, разнеся их по разным углам комнаты.

Приведенный пример свидетельствует о том, что при вычислении размеров и мощности алюминиевого радиатора разные методы могут давать совершенно разные значения. Поэтому такой расчет необходимо проводить максимально тщательно, проверяя границы применимости каждого используемого способа. Ошибки, полученные на этом этапе, могут очень серьезно сказаться на комфортности проживания в доме в течение многих лет его эксплуатации.

Как рассчитать количество радиаторов отопления и секций в каждом радиаторе

Чтобы отопительная система работала эффективно, мало просто расставить батареи по комнатам. Нужно обязательно рассчитать количество радиаторов, с учетом площади и объема помещений и мощности самой печи или котла. Немаловажно учесть и вид батареи, количество секций в каждой и скорость доставки «рабочей жидкости».

8 секционный радиатор отопления в квартире

На сегодняшний день промышленностью производится несколько видов радиаторов, которые выполняются из разных материалов, имеют различные формы и, конечно же, характеристики. Для эффективности обогрева дома, покупая их, нужно учесть все минусы и плюсы моделей, представленных на рынке.

Владельцу недвижимости не обязательно обращаться к специалистам, за помощью в расчете количества радиаторов отопления, для этого достаточно уметь пользоваться рулеткой, калькулятором и шариковой ручкой или карандашом! Следуя нашим инструкциям у вас обязательно всё получится!

Виды радиаторов

Первое, что нужно знать — это вид и материал из которых сделаны ваши радиаторы, именно от этого в частности и зависит их количество. В продаже присутствуют как всем уже знакомые чугунные виды батарей, но значительно усовершенствованные, так и современные экземпляры, выполненные из алюминия, стали и, так называемые, биметаллические радиаторы из стали и алюминия.

Современные варианты батарей изготавливаются в разнообразных дизайнерских исполнениях и имеют многочисленные оттенки и цвета, поэтому можно легко выбрать те модели, которые больше подходят для конкретного интерьера. Однако, нельзя забывать и о технических характеристиках приборов.

  • Самыми популярными из современных радиаторов стали биметаллические батареи. Они устроены по комбинированному принципу и состоят из двух сплавов: изнутри они стальные, снаружи — алюминиевые. Привлекают они своим эстетичным внешним видом, экономностью в использовании и легкостью в эксплуатации.

    Современная биметаллическая батарея на 10 секций

Но есть у них и слабая сторона — приемлемы они только для систем отопления с достаточно высоким давлением, а значит, для строений, подключенных к центральному отоплению в многоквартирных домах. Для зданий с автономным отопительным снабжением они не подходят и от них лучше отказаться.

  • Стоит поговорить и о чугунных радиаторах. Несмотря на их большой «исторический стаж», они не теряют своей востребованности. Тем более, что сегодня можно приобрести чугунные варианты, выполненные в различном дизайне, и их легко можно подобрать для любого дизайнерского оформления. Более того, производятся такие радиаторы, которые вполне могут стать дополнением или даже украшением помещения.

Чугунный радиатор в современном стиле

Эти батареи подойдут как для автономного, так и для центрального отопления, и под любой теплоноситель. Они дольше, чем биметаллические прогреваются, но и более длительное время остывают, что способствует большей теплоотдаче и сохранению тепла в помещении. Единственным условием долгосрочной их эксплуатации является качественный монтаж при установке.

  • Стальные радиаторы делятся на два типа: трубчатые и панельные.

Стальные радиаторы трубчатой конструкции

Трубчатые варианты более дорогостоящие, они нагреваются медленнее панельных, и, соответственно, дольше сохраняют температуру.

Панельный тип стальных радиаторов

Панельные — быстро нагревающиеся батареи. Они намного дешевле трубчатых по цене, тоже неплохо обогревают комнаты, но в процессе их быстрого остывания, выхолаживается и помещение. Поэтому эти батареи в автономном отоплении не экономичны, так как требуют практически постоянного притока тепловой энергии.

Эти характеристики обоих типов стальных батарей и будут напрямую влиять на количество точек их размещения.

Стальные радиаторы имеют респектабельный вид, поэтому неплохо вписываются в любой стиль оформления помещения. Они не собирают на своей поверхности пыль и легко приводятся в порядок.

  • Алюминиевые радиаторы имеют хорошую теплопроводность, поэтому считаются вполне экономичными. Благодаря этому качеству и современному дизайну, алюминиевые батареи стали лидерами продаж.

Легкие и эффективные алюминиевые радиаторы

Но, приобретая их, необходимо учитывать один их недостаток — это требовательность алюминия к качеству теплоносителя, поэтому они больше подходят только для автономного отопления.

Для того, чтобы рассчитать, сколько радиаторов понадобится на каждую из комнат, придется учесть многие нюансы, как связанные с характеристиками батарей, так и другие, влияющие на сохранность тепла в помещениях.

Как рассчитать количество секций радиатора отопления

Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.

На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.

Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.

Расчет на основании площади помещения

Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:

Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:

  • На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
  • На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
  • Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
  • Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.

Ниша снизит энергоотдачу радиатора на 5 %

  • Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.

Экраны на радиаторах — это красиво, но они заберут до 15% мощности

Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.

Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.

Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.

Каждое помещение просчитывается отдельно

Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.

Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.

Расчет количества секций в радиаторах, исходя из объема помещения

Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.

Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.  и потолком, высотой 2,5 метра:

16 × 2,5= 40 куб. м.

Далее нужно найти значение тепловой мощности, это делается следующим образом

41 × 40=1640 Вт.

 Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:

 1640 / 170 = 9,6.

После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.

Существуют также некоторые особенности:

  • Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
  • Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
  • При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
  • Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.  Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.

Видео: Советы специалистов по расчету количества радиаторов отопления в квартире

Если вам до сих пор не до конца понятно, как производятся эти расчеты и вы не рассчитываете на свои силы, можно обратиться к специалистам, которые произведут точный расчет и сделают анализ с учетом всех параметров:

  • особенности погодных условий региона, где расположено строение;
  • температурные климатические показатели на начало и окончание отопительного сезона;
  • материал, из которого возведено строение и наличие качественного утепления;
  • количество окон и материал, из которого изготовлены рамы;
  • высота отапливаемых помещений;
  • эффективность установленной системы отопления.

Зная все вышеперечисленные параметры, специалисты-теплотехники по имеющейся у них программе расчёта с легкостью высчитают нужное количество батарей. Такой просчет с учетом всех нюансов вашего дома гарантированно сделает его уютным и теплым, а вас и вашу семью — счастливыми!

Расчет необходимой мощности для комнаты

Энергия 29 июн 2020

Было бы полезно знать волшебную формулу, которая даст нам количество тепла, необходимое для обогрева отдельной комнаты или всего дома. К счастью, есть несколько формул, позволяющих приблизиться к фактическому результату, но они допускают погрешность. Почему предел погрешности? Это связано с тем, что не все дома одинаковы.

Чтобы рассчитать необходимое отопление, мы должны учитывать размер и объем дома, ориентацию, размер и количество окон, тип изоляции стен и крыши и т. Д.

ДВЕ ПОЛЕЗНЫЕ ФОРМУЛЫ

Обычно мощность, необходимая для электрического обогрева, рассчитывается в ваттах.

Мощность: умножьте площадь в футах на 10. Для комнаты 20 футов на 20 футов мы получим 400 квадратных футов, умноженных на 10, чтобы получить 4000 ватт. Количество ватт = площадь x 10.

Этот результат действителен для домов, в которых есть комнаты с высотой потолков 8 футов. В случае современных домов с потолками выше 8 футов, практическое правило расчета — 1.25 Вт на кубический фут. Принимая во внимание предыдущий пример, высота потолка 9 футов составит 400 квадратных футов x 9 x 1,25 = 4500 Вт. Количество ватт = площадь x высота x 1,25.

Если вы подозреваете, что стены или потолок имеют дефекты теплоизоляции, вы можете добавить несколько процентных пунктов к расчету. То же самое можно сказать и о стенах с большими окнами. После выполнения расчетов для существующего дома нам может потребоваться добавить дополнительные обогреватели, такие как конвекторы или приточно-вытяжные устройства.

И наоборот, если комната имеет окна и хорошо ориентирована на солнце, мы можем придерживаться обычного расчета.

Наилучшая оценка потребностей дома в отоплении будет сделана путем сложения результатов для каждой комнаты.

В Северной Америке до сих пор можно встретить использование БТЕ / час в качестве меры мощности при обогреве. Формула для преобразования БТЕ в кВт следующая: P (кВт) = P (БТЕ / ч) / 3412,14.

Если в качестве источника тепла мы полагаемся исключительно на электрические плинтусы, их обычно устанавливают у основания окон, чтобы обеспечить наилучшее распределение тепла.В этом случае не стесняйтесь разделить общую требуемую мощность на количество окон в каждой комнате.

Для получения дополнительной информации о типе отопительного оборудования для конкретной комнаты или всего дома посетите следующую страницу.

Алюминиевый радиатор секционный силовой. Чугунные радиаторы и расчет их мощности для комнаты

Эта техника выглядит современно и недорого. Они способны при правильной установке и длительной эксплуатации выполнять свои функции. Чтобы в полной мере использовать все потенциальные возможности, необходимо точно рассчитать мощность алюминиевого радиатора, которая потребуется для качественного обогрева жилья в самых сложных погодных условиях.

Конструктивно-технические особенности

Качественные изделия из этого металла создаются методом литья. Это дает возможность изготавливать прочные, долговечные нагревательные приборы, в которых отсутствуют отдельные элементы, их соединения. Эта технология достаточно сложная.Чтобы исключить появление дефектов, требуется точное соблюдение многих режимов производства, контроль отсутствия скрытых дефектов, полостей. Стоимость таких радиаторов несколько выше, чем у сборных моделей. Но именно они могут без повреждений выдержать большое повышение давления в магистралях теплоносителя.

Второй распространенный метод — экструзия. Металл под давлением заполняет специальную форму. Заготовку разрезают на части. Отдельные элементы соединяются сваркой.В этом случае используются относительно недорогие производственные процессы. Но следует учитывать, что готовая продукция менее прочна и надежна по сравнению с первым вариантом.

Алюминиевые радиаторы нужных размеров создаются из отдельных блоков, чтобы конечной мощности хватило на конкретное помещение. Ниже представлены диапазоны значений основных характеристик устройств данного типа:

  • Максимально допустимое давление в системе теплоснабжения: от 6 до 24 атм.
  • Температура теплоносителя (макс.): До + 110 ° С.
  • Срок службы отопительного прибора: от 10 до 20 лет.

Параметры одной секции:

  • мощность — от 0,08 до 0,210 кВт;
  • объем охлаждающей жидкости — от 0,2 до 0,5 л;
  • вес — от 0,9 до 1,5 кг.

Сколько секций алюминиевого радиатора нужно для обогрева одной комнаты


Самый простой и, соответственно, неточный расчет можно произвести по такой пропорции: на каждый квадратный метр помещения тепловая мощность не менее 0.1 кВт.

Чтобы узнать, сколько разделов вам нужно, выполните следующие действия:

  • Для отопления одной комнаты площадью 30 кв. Требуется мощность 3 кВт: 30 * 1 = 3.
  • Если мощность одного элемента 0,15 кВт, то нужно 20 секций: 3 / 0,15 = 20.
  • Это слишком большое количество для одного радиатора, поэтому необходимо будет изготовить и установить в комнате две батареи. Каждый из них будет состоять из 10 разделов.

Более точный результат можно получить, если учесть следующие факторы:

  • климатические условия в районе;
  • высота потолков;
  • количество оконных и дверных проемов в помещении, наружных стенах;
  • наличие теплых полов снизу и сверху;
  • Общие изоляционные характеристики конструкции.

Поправочные коэффициенты используются для каждого параметра. Их значения можно найти в профессиональных справочниках. Подставив их в общую формулу, не составит труда узнать, какая мощность в кВт требуется секции и устройства в целом для конкретного помещения. Если получилась неточная цифра, то следует округлить в большую сторону. При правильной настройке оборудования легче вносить коррективы, если оно приобретается с определенным запасом возможностей.

Как правильно установить и рентабельнее эксплуатировать алюминиевые радиаторы

Из приведенных выше данных нетрудно понять основные преимущества этого типа приборов.

Впрочем, перечислим их отдельно:

  • Сборная конструкция позволяет достаточно точно подобрать количество элементов, чтобы мощность нагрева была достаточной.
  • Малый вес облегчает производство транспортных и монтажных работ.Не создает лишних нагрузок на крепеж и конструкцию здания.
  • Небольшие внутренние объемы и отличная теплопроводность уменьшают инерцию. Это означает, что допустимо комбинировать такие устройства с индивидуальными регуляторами, а также интегрировать их в современные системы автоматизированного поддержания комфортного температурного режима. Такое оборудование снизит потребление энергоресурсов при эксплуатации.
  • Нейтральный внешний вид большинства моделей хорошо сочетается с множеством дизайнов.
  • Низкая стоимость устройств позволяет без больших затрат создавать новые или модернизировать старые системы отопления.

Они подходят как для самых простых однотрубных, так и для самых сложных коллекторных схем. Они подходят для работы с гравитационным или вынужденным движением теплоносителя.


При установке необходимо учитывать следующие особенности:

  • Все устройства должны быть оборудованы клапанами для выпуска воздуха.
  • Крепление их необходимо производить строго горизонтально.
  • Когда pH охлаждающей жидкости (Ph) выходит за пределы диапазона от 7 до 8 единиц, происходят реакции, разрушающие алюминий.
  • Со временем этот металл покрывается защитной оксидной пленкой, которая предотвратит упомянутые выше процессы. Однако сам он может быть поврежден песком и другими механическими примесями. Такие загрязнения можно удалить с помощью стандартного основного фильтра.
  • В городских условиях сложно предотвратить возникновение аварийных ситуаций, связанных с резким повышением давления. Здесь рекомендуется устанавливать нагревательные приборы, рассчитанные на высокое давление.

Чугунные радиаторы — это радиаторы, дошедшие до нашего времени с далеких 70-х годов прошлого тысячелетия. Сегодня они более современные, отличить их от биметаллических или алюминиевых эмалированных радиаторов практически невозможно. Чугунные радиаторы способны работать при температуре охлаждающей жидкости до 110 0 С.

Довольно большие размеры и внушительный вес компенсируются инерционностью, позволяющей регулировать температуру.Они идеальны для любого помещения, надежны и долговечны, могут использоваться с любыми котлами и теплоносителями. Многих интересует вопрос — сколько киловатт в одной секции чугунного радиатора? Вы найдете ответ на этот вопрос ниже.

Радиатор отопления чугунный

Радиаторы чугунные М-140

Радиаторы типа М-140 имеют достаточно простую конструкцию и удобны в обслуживании. Материал, используемый при их изготовлении — чугун. Он обладает высокой устойчивостью к коррозионным процессам и может использоваться с любым теплоносителем.Низкий уровень гидравлического давления позволяет использовать радиаторы как для гравитационной, так и для принудительной циркуляции теплоносителя. Высокий порог противодействия гидроударам позволяет использовать их как в двухэтажных, так и в девятиэтажных зданиях. Преимущества М-140 — простота обслуживания, надежность, длительный срок службы и невысокая стоимость.

Радиаторы чугунные МС-140-500

Широко применяются для отопления зданий с t теплоносителя в пределах 130 0 С и давлением до 0.9 МПа. Вместимость одной полости 1,45 литра, объем обогреваемой площади 0,244 квадратных метра … Материал, из которого изготовлены секции — СЧ-10 (серый чугун).

Радиаторы чугунные МС-140-300

Радиаторы отопления предназначены для обогрева помещений с низкими подоконниками и давлением 0,9 МПа. Вместимость полости 1,11 литра. Вес полости с учетом комплектующих 5700 г. Расчетный тепловой поток 0,120 кВт.

Радиаторы чугунные МС-140М-500-09

Радиаторы данной модели применяются для различных помещений с t теплоносителя до 130 0 С и давлением до 0.9 МПа. Масса одной полости 7100 г. Материал изготовления — серый чугун. S обогрев с одной камерой — 0,244 м 2.

Важно! Выбирая радиатор для жилья, обязательно обращайте внимание на его характеристики и заранее производите всевозможные расчеты, так как обменять купленный товар будет практически невозможно.

Плюсы и минусы использования чугунных радиаторов


Стилизованный чугунный радиатор

Любая существующая сегодня система отопления имеет как плюсы, так и минусы, учтите их.

Номинальная тепловая мощность каждой секции составляет 160 Вт. Примерно 65% выделяемого теплового потока нагревает воздух, накапливающийся в верхней части помещения, а оставшиеся 35% нагревают нижнюю часть помещения.

  1. Длительный срок эксплуатации от 15 до 50 лет.
  2. Высокая стойкость к коррозионным процессам.
  3. Возможность использования в системах отопления с гравитационной циркуляцией теплоносителя.
  1. Низкая эффективность коррекции коэффициента теплоотдачи;
  2. Высокая трудоемкость при установке;

Важно! Чтобы не столкнуться с проблемой при установке, обязательно учтите вышеперечисленные плюсы и минусы чугунных радиаторов.Их установка стоит недешево, но повторные монтажные работы потребуют немалых финансовых средств.

Расчет сечений (полостей) радиаторов


Так вот, сколько кВт в 1 секции чугунного радиатора? Чтобы рассчитать количество секций и их мощность, нужно определиться с V-комнатой, которая в дальнейшем появится в расчетах. Далее выбираем значение тепловой энергии. Его значения следующие:

  1. Отопление 1м 3 дома из панелей — 0. 041кВт.
  2. Отопление 1 м 3 кирпичного дома со стеклопакетами и утепленными стенами — 0,034 кВт.
  3. Обогрев 1 м 3 помещения, возведенного по современным строительным нормам — 0,034 кВт.

Тепловой поток одной полости МС 140-500 0,160 кВт.

Затем выполняются следующие математические операции: объем помещения умножается на тепловой поток. Полученное значение делится на количество тепла, выделяемого одной камерой. Результат округлите в большую сторону и получите необходимое количество секций.

Сколько киловатт в чугунной секции? Каждый тип радиатора имеет различное значение, которое производитель рассчитывает при их изготовлении и указывает его в сопроводительной документации.

Сделаем примерный расчет на основе имеющихся данных.

Помещение имеет следующие данные: тип помещения — панельный дом, длина — высота — ширина — 5х6х2,7 м соответственно.

  1. Рассчитываем объем помещения V:

В = 5 х 6 х 2. 7 = 81 м 3

  1. Требуемый тепловой объем:

Q = 81 * 0,041 = 3,321 кВт

  1. Исходя из этого количество секций радиатора составляет:

n = 3,321 / 0,16 = 20,76

, где 0,16 — тепловая мощность одной секции. Уточняется производителем.

  1. Округляем значение в большую сторону, исходя из чего количество необходимых секций составляет 21 шт.


Чтобы отопление дома было эффективным, следует покупать качественные элементы.Перед этим — провести правильный расчет своей мощности.

Расчеты производятся с учетом:

  • площади помещения;
  • высота его потолка;
  • кол-во окон
  • длина помещения;
  • Особенности климата региона.

Правильный выбор

  1. Производительность отопительных приборов должна составлять 10% площади помещения при высоте его потолка менее 3 м.
  2. Если больше, то прибавляем 30% .
  3. Для конечной комнаты добавьте еще 30% .

Необходимые расчеты


После определения теплопотерь нужно определить производительность прибора (сколько кВт должно быть в стальном радиаторе или других приборах).

  1. Например, нужно отапливать помещение площадью 15 м² и высотой потолка 3 м.
  2. Находим его объем: 15 ∙ 3 = 45 м³.
  3. В инструкции сказано, что для обогрева 1 м³ в условиях Средней полосы России необходимо 41 Вт тепловой мощности.
  4. Это означает, что мы умножаем объем помещения на эту цифру: 45 ∙ 41 = 1845 Вт. Этой мощностью должен обладать радиатор отопления.

Примечание!
Если жилище находится в районе с суровыми зимами, полученное значение необходимо умножить на 1,2 (коэффициент теплопотерь).
Окончательный показатель составит 2214 Вт.

Количество ребер

Из него вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога составляет 150-200 Вт. Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214: 200 = 11.07. Это значит, что для обогрева помещения нужна батарея из 11 секций.

Тепловая мощность


На фото примерная теплопередача чугуна.

В помещении отопительные приборы размещаются у внешней стены под оконным проемом. В результате тепло, излучаемое устройством, распределяется оптимально. Холодный воздух, идущий из окон, блокируется нагретым потоком, идущим вверх от радиатора.

Чугунные аккумуляторы

Чугунные аналоги имеют следующие преимущества:

  • имеют длительный срок службы;
  • обладают высоким уровнем прочности;
  • устойчивы к коррозионным повреждениям;
  • отлично подходит для использования в коммунальных системах, работающих на некачественном теплоносителе.
  • Сейчас производители выпускают чугунные батареи (их цена выше, чем у обычных аналогов), которые имеют улучшенный внешний вид за счет использования новых технологий литья их корпусов.

Недостатки изделий: большая масса и тепловая инерция.

В нижней таблице указано количество кВт в чугунном радиаторе в зависимости от его модели.

Примечание!
Для обогрева помещения площадью 15 м² мощность, то есть кВт чугунного радиатора, должна быть не менее 1,5. Другими словами, аккумулятор должен состоять из 10-12 секций.

Алюминиевые радиаторы


Алюминиевые изделия имеют более высокую тепловую мощность, чем чугунные аналоги.На вопрос, сколько кВт находится в одной секции алюминиевого радиатора, специалисты отвечают, что достигает 0,185-0,2 кВт. В итоге 9-10 секций алюминиевых профилей хватит для нормативного уровня обогрева пятнадцатиметрового помещения.

Достоинства таких устройств:

  • легкий вес;
  • эстетичный дизайн;
  • высокий уровень теплоотдачи;
  • Температуру можно контролировать своими руками с помощью вентилей.

Но изделия из алюминия не обладают такой прочностью, как чугунные аналоги, например, маслоохладитель на 2 кВт. Поэтому они чувствительны к скачкам рабочего давления в системе, гидроударам, излишне высокой температуре теплоносителя.

Примечание!
Когда вода имеет высокий уровень pH (кислотности), алюминий выделяет много водорода.
Это негативно сказывается на нашем здоровье.
Исходя из этого, желательно использовать в системе отопления такие устройства, в которых он имеет нейтральную кислотность.

Биметаллические изделия

Прежде чем выяснять, сколько кВт в 1 секции биметаллического радиатора, следует отметить, что такие батареи имеют схожие рабочие параметры с алюминиевыми аналогами.Однако им не присущи недостатки.

Это обстоятельство определило конструкцию устройств.

  1. Они состоят из медных или стальных труб, по которым течет хладагент.
  2. Трубки скрыты в корпусе из алюминиевой пластины. В результате вода, циркулирующая внутри, не взаимодействует с алюминием корпуса.
  3. Исходя из этого, кислотные и механические характеристики теплоносителя никак не влияют на работу и состояние прибора.


Благодаря стали труб арматура имеет высокую прочность. Внешние ребра из алюминия обеспечивают повышенную теплоотдачу. Пытаясь узнать, сколько кВт находится в стальном радиаторе, имейте в виду, что биметалл имеет самую высокую теплоотдачу — около 0,2 кВт на каждую кромку.

Мощность

Узнав сколько кВт в 1 секционном стальном радиаторе или аналоге из другого металла, можно рассчитать теплоотдачу приобретенного изделия.Это позволит создать эффективную систему отопления в своем доме.

Видео в этой статье продолжает наглядно информировать вас по теме.

Как рассчитать количество батарей для отопления. Расчет радиаторов отопления: варианты и приемы.

При модернизации системы отопления, помимо замены труб, меняют и радиаторы. А сегодня они из разных материалов, разных форм и размеров. Не менее важно то, что они имеют разное тепловыделение: количество тепла, которое может передаваться воздуху.И это обязательно учитывается при расчете сечений радиаторов отопления.

В помещении будет тепло, если уходит тепло. Поэтому в расчетах берутся теплопотери помещения (они зависят от климатической зоны, от материала стен, утеплителя, площади окон и т. Д.). Второй параметр — тепловая мощность одной секции. Это количество тепла, которое он может произвести при максимальных параметрах системы (90 ° C на входе и 70 ° C на выходе).Эту характеристику необходимо указать в паспорте, она часто присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещения и системы отопления

Один важный момент: делая расчеты самостоятельно, имейте в виду, что большинство производителей указывают максимальный показатель, который они получили при идеальных условиях. Поэтому производите любое округление в большую сторону. В случае низкотемпературного нагрева (температура на входе ниже 85 ° C) они ищут тепловую мощность по соответствующим параметрам или пересчитывают (описано ниже).

Расчет площади

Это простейшая методика, позволяющая приблизительно оценить количество секций, необходимых для обогрева помещения. На основании множества расчетов выведены нормы средней мощности обогрева одного квадрата площади. Для учета климатических особенностей региона в СНиП прописаны две нормы:

.
  • для регионов средней полосы России от 60 Вт до 100 Вт;
  • для участков выше 60 ° мощность нагрева на квадратный метр составляет 150-200 Вт.

Почему в норме дан такой большой разброс? Чтобы можно было учесть материалы стен и степень утепления. Для бетонных домов берутся максимальные значения; для домов из кирпича можно использовать средние значения. Для утепленных домов — минимум. Еще одна важная деталь: эти нормы рассчитаны на среднюю высоту потолка — не выше 2,7 метра.


Зная площадь помещения, умножьте его норму расхода тепла, наиболее подходящую для ваших условий.Получите полную потерю тепла в помещении. В технических характеристиках выбранной модели радиатора найдите тепловую мощность одной секции. Разделите общие тепловые потери на мощность, получите их количество. Это несложно, но для наглядности приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловая комната 16 м 2, в среднем переулке, в кирпичном доме. Установите аккумуляторы тепловой мощностью 140 Вт.

Для кирпичного дома потери тепла принимаем за середину диапазона.Так как комната угловая, лучше брать большее значение. Пусть будет 95 ватт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь рассмотрим количество: 1520 Вт / 140 Вт = 10,86 шт. Круглая, получается 11 шт. Нужно будет установить так много секций радиатора.

Расчет батарей отопления на площадь прост, но далек от идеала: не учитывается полностью высота потолков. Для нестандартных высот используется другой прием: по объему.

Подсчет аккумуляторов по объему

В СНиП есть нормы на обогрев одного кубометра помещения. Даны для разных типов построек:

  • на 1 м 3 кирпича требуется 34 Вт тепла;
  • для панели — 41 Вт

Данный расчет секций радиатора аналогичен предыдущему, только теперь нам нужна не площадь, а другие по объему и нормам. Умножаем объем на норму, полученный показатель делим на мощность одной секции радиатора (алюминиевой, биметаллической или чугунной).


Формула для расчета количества секций по объему

Пример расчета объема

Например, рассчитываем, сколько секций нужно в комнате площадью 16 м 2 и высотой потолка 3 метра. Дом кирпичный. Берем радиаторы такой же мощности: 140 Вт:

  • Найдите объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных домов 34 Вт).48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько секций нужно. 1632 Вт / 140 Вт = 11,66 шт. Круглый, получаем 12 шт.

Теперь вы знаете два способа рассчитать количество радиаторов на комнату.

Теплоотдача в одной секции

Сегодня ассортимент радиаторов большой. При внешнем сходстве большинства тепловые характеристики могут существенно различаться. Они зависят от материала, из которого они изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Таким образом, точно сказать, сколько кВт приходится на 1 секцию алюминиевого (чугунного биметаллического) радиатора, можно сказать только по каждой модели. Эти данные указывает производитель. Ведь разница в размерах существенная: одни из них высокие и узкие, а другие низкие и глубокие. Силовые секции одинаковой высоты от одного производителя, но разных моделей могут отличаться на 15-25 Вт (см. Таблицу ниже STYLE 500 и STYLE PLUS 500). Еще более заметные отличия могут быть у разных производителей.


Тем не менее, для предварительной оценки того, сколько секций батарей нужно для обогрева помещения, были выведены средние значения тепловой мощности для каждого типа радиаторов. Их можно использовать для приблизительных расчетов (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметалл — одна секция излучает 185 Вт (0,185 кВт).
  • Алюминий — 190 Вт (0,19 кВт).
  • Чугун — 120 Вт (0,120 кВт).

Точнее, сколько кВт в одной секции биметаллического, алюминиевого или чугунного радиатора можно у вас, когда вы выбираете модель и определяете размеры. В чугунных батареях может быть большая разница. Они бывают с тонкими или толстыми стенками, из-за чего их тепловая мощность значительно меняется. Выше средние значения для батарей знакомой формы (гармошки) и близких к ней. Радиаторы в стиле ретро имеют значительно меньшую тепловую мощность.


Это технические характеристики чугунных радиаторов турецкой компании Demir Dokum. Разница более чем существенная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиП, было получено среднее количество секций радиатора на 1 м 2:

  • биметаллические секции плавок 1.8 м 2;
  • алюминий — 1,9-2,0 м 2;
  • чугун — 1,4-1,5 м 2;
  • биметаллический 16 м 2 / 1,8 м 2 = 8,88 шт., Округлый — 9 шт.
  • алюминий 16 м 2/2 м 2 = 8 шт.
  • чугун 16 м 2 / 1,4 м 2 = 11,4 шт, округлый — 12 шт.

Эти расчеты являются приблизительными. По ним можно приблизительно оценить стоимость покупки отопительных приборов. Вы можете точно рассчитать количество радиаторов на комнату, выбрав модель, а затем пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции аккумулятора указана для идеальных условий. Аккумулятор будет выделять столько тепла, если его охлаждающая жидкость имеет температуру + 90 ° C на входе, + 70 ° C на выходе и + 20 ° C в помещении. То есть температурный напор системы (она же «дельта-система») будет 70 ° C. Что делать, если в вашей системе на входе температура выше + 70 ° C? или вам нужна комнатная температура + 23 ° C? Пересчитайте заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас + 70 ° C, на выходе 60 ° C, а в помещении вам нужна температура + 23 ° C. Находим дельту вашей системы: это среднее арифметическое значений температур. на входе и выходе за вычетом температуры в помещении.


Для нашего случая получается: (70 ° C + 60 ° C) / 2 — 23 ° C = 42 ° C. Дельта для таких условий составляет 42 ° C.Далее находим это значение в таблице преобразования (находится ниже) и заявленная мощность умножается на этот коэффициент. Мы узнаем мощность, которую этот раздел может выдать для ваших условий.


Находим в столбцах, окрашенных в синий цвет, линию с дельтой 42 ° C. Это соответствует коэффициенту 0,51. Теперь рассчитаем тепловую мощность 1 секции радиатора для нашего корпуса. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получим: 185 Вт * 0.51 = 94,35 Вт. Почти вдвое меньше. Именно эту мощность нужно подменить при выполнении расчета сечений радиаторов. Только с учетом индивидуальных параметров в комнате будет тепло.

Существует несколько методов расчета количества радиаторов, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество радиаторов, необходимое для их компенсации.

Существуют разные методы расчета.Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применяются коэффициенты, позволяющие учесть существующие «нестандартные» условия каждой конкретной комнаты (угловая комната, выход на балкон, окно через стену и т. Д.). Есть более сложный расчет по формулам. Но по сути это одни и те же коэффициенты, только собранные в одну формулу.

Есть еще один способ. Он определяет фактическую потерю. Реальные потери тепла определяет специальный прибор — тепловизор.И исходя из этих данных, сколько радиаторов нужно для их компенсации. Что еще лучше с этим методом, так это то, что на изображении тепловизора вы можете четко видеть, где тепло уходит наиболее активно. Это может быть дефект в работе или стройматериалах, трещина и т. Д. Так что заодно можно поправить положение.

Расчет радиаторов отопления по площади

Самый простой способ. Рассчитайте количество тепла, необходимое для обогрева, исходя из площади помещения, в котором будут установлены радиаторы. Вы знаете площадь каждой комнаты, а потребность в тепле можно определить по СНиПа:

.
  • на среднеклиматическую полосу для обогрева 1м2 жилого помещения требуется 60-100Вт;
  • для областей с температурой выше 60 ° C требуется 150-200 Вт.

Исходя из этих стандартов, вы можете рассчитать, сколько тепла потребуется вашей комнате. Если квартира / дом находится в средней климатической зоне, для обогрева площади 16м 2 потребуется 1600Вт тепла (16 * 100 = 1600).Так как нормы средние, а погода не балует постоянством, считаем, что 100Вт требуется. Хотя, если вы живете на юге средней климатической зоны и у вас мягкие зимы, рассмотрите вариант 60 Вт.


Запас мощности в отоплении нужен, но не очень большой: с увеличением количества необходимой мощности количество радиаторов увеличивается. И чем больше радиаторов, тем больше охлаждающей жидкости в системе. Если для подключенных к центральному отоплению это не критично, то для тех, кто имеет или планирует индивидуальное отопление, большой объем системы означает большие (дополнительные) затраты на подогрев теплоносителя и большую инерционность системы ( установленная температура поддерживается менее точно). И возникает закономерный вопрос: «Зачем платить больше?».

Рассчитав потребность помещения в тепле, можно узнать, сколько секций нужно. Каждый из отопительных приборов может выделять определенное количество тепла, которое указано в паспорте. Возьмите найденную потребность в тепле и разделите на мощность радиатора. В результате получается необходимое количество секций для компенсации потерь.

Рассчитываем количество радиаторов для одного помещения. Мы определили, что требуется 1600 Вт. Пусть мощность одной секции 170Вт.Получается 1600/170 = 9411 штук. Вы можете округлить в большую или меньшую сторону по своему усмотрению. Меньший можно округлить, например, на кухне — дополнительных источников тепла достаточно, а больший лучше в комнате с балконом, большим окном или в угловой комнате.

Система простая, но недостатки очевидны: высота потолков может быть разной, не учитывается материал стен, окон, утеплитель и целый ряд факторов.Так что расчет количества секций радиаторов отопления по СНиП приблизительный. Для точного результата необходимо внести коррективы.

Как рассчитать секции радиатора по объему помещения

В данном расчете учитывается не только площадь, но и высота потолков, ведь нужно нагреть весь воздух в помещении. Так что такой подход оправдан. И в этом случае техника аналогична. Определяем объем помещения, а потом по нормам узнаем, сколько тепла нужно для его обогрева:

Рассчитываем все для одной комнаты площадью 16м 2 и сравниваем результаты.Пусть высота потолка 2,7м. Объем: 16 * 2,7 = 43,2м 3.

  • В панельном доме. Тепло, необходимое для обогрева, составляет 43,2м 3 * 41В = 1771,2Вт. Если взять все те же секции мощностью 170Вт, то получим: 1771Вт / 170Вт = 10,418шт (11шт).
  • В кирпичном доме. Тепло необходимо 43,2м 3 * 34Вт = 1468,8Вт. Считаем радиаторы: 1468,8Вт / 170Вт = 8,64шт (9шт).

Как видите, разница довольно большая: 11шт и 9шт. Причем при расчете площади получено среднее значение (если округлить в одну сторону) — 10 шт.

Корректировка результатов

Чтобы получить более точный расчет, нужно учесть как можно больше факторов, уменьшающих или увеличивающих теплопотери. Это из чего сделаны стены и насколько хорошо они утеплены, насколько велики окна и какое на них остекление, сколько стен в комнате выходят на улицу и т. Д. Для этого есть коэффициенты, по которым нужно умножить найденные значения теплопотерь помещения.


Окно

На окна приходится от 15% до 35% теплопотерь.Конкретный показатель зависит от размера окна и от того, насколько хорошо оно утеплено. Следовательно, есть два соответствующих коэффициента:

  • отношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • Обычный двухкамерный стеклопакет — 1,0
    • стеклопакеты обыкновенные — 1. 27.

Стены и кровля

Для учета потерь важны материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот шансы на эти факторы.

Степень изоляции:

  • Кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • Недостаточно (отсутствует) — 1,27
  • хорошо — 0,8

Наружные стены:

  • салон без потерь, коэффициент 1.0
  • один — 1,1
  • два — 1,2
  • три — 1,3

На количество теплопотерь влияет обогревается или нет, помещение располагается сверху. Если жилое отапливаемое помещение находится сверху (второй этаж дома, другая квартира и т. Д.), Понижающий коэффициент составляет 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак не влияет на температуру в и (коэффициент 1,0).


Если расчет производился по площади, а высота потолков нестандартная (принимают высоту 2.7 м в качестве стандарта), затем используйте пропорциональное увеличение / уменьшение с помощью коэффициента. Считается легким. Для этого разделите реальную высоту потолка в комнате на стандартную 2,7 м. Получите желаемое соотношение.

Рассчитаем для примера: пусть высота потолка 3,0 м. Получаем: 3,0м / 2,7м = 1,1. Это означает, что количество секций радиатора, которое рассчитывается по площади для этого помещения, нужно умножить на 1,1.

Все эти нормы и коэффициенты определены для квартир.Чтобы учесть теплопотери дома через крышу и цоколь / фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома равен 1,5.

Климатические факторы

Вы можете вносить изменения в зависимости от средней температуры зимой:

  • -10 о С и выше — 0,7
  • -15 о С — 0,9
  • -20 ° С — 1,1
  • -25 ° С — 1,3
  • -30 ° С — 1,5

Сделав все необходимые настройки, вы получите более точное количество радиаторов, необходимое для обогрева помещения с учетом параметров помещения.Но это далеко не все критерии, влияющие на мощность теплового излучения. Есть и технические тонкости, о которых мы поговорим ниже.

Расчет разных типов радиаторов

Если вы собираетесь устанавливать секционные радиаторы стандартного размера (с осевым расстоянием 50 см по высоте) и уже выбрали материал, модель и желаемый размер, то с расчетом их количества сложностей возникнуть не должно. У большинства авторитетных компаний, поставляющих хорошее отопительное оборудование, есть технические данные на все модификации на сайте, среди которых есть тепловая мощность.Если указывается не мощность, а расход теплоносителя, то преобразовать в мощность несложно: расход теплоносителя 1 л / мин примерно равен мощности 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется высотой между центрами отверстий для подачи / отвода охлаждающей жидкости

Чтобы облегчить жизнь клиентам, многие сайты устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к занесению данных о вашем помещении в соответствующие поля. И на выходе у вас готовый результат: количество секций этой модели в штуках.


Но если просто подумать о возможных вариантах, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов отопления от расчета из алюминия, стали или чугуна ничем не отличается. Только тепловая мощность одной секции может быть разной.

  • алюминий — 190 Вт
  • биметаллический — 185Вт
  • чугун — 145Вт.

Если вам просто интересно, какой материал выбрать, вы можете использовать эти данные. Для наглядности представляем простейший расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества биметаллических нагревательных приборов стандартного размера (межосевое расстояние 50 см) предполагается, что одна секция может обогреть 1 штуку.8м 2 площади. Тогда для комнаты 16м 2 нужно: 16м 2 / 1,8м 2 = 8,88шт. Округляем — нам нужно 9 разделов.

Аналогично считаем для чугунных или стальных бараков. Нужны только нормы:

  • Радиатор биметаллический — 1,8 м 2
  • алюминий — 1,9-2,0 м 2
  • чугун — 1,4-1,5 м 2.

Это данные для секций с межосевым расстоянием 50 см. Сегодня в продаже есть модели разной высоты: от 60 см до 20 см и даже ниже. Модели 20см и ниже называются бордюрами.Естественно, их мощность отличается от указанной нормативной, и если вы планируете использовать «нестандартную», вам придется внести коррективы. Либо ищите паспортные данные, либо рассчитывайте сами. Мы исходим из того, что теплоотдача теплового устройства напрямую зависит от его площади. С уменьшением высоты уменьшается площадь устройства, а значит, пропорционально уменьшается мощность. То есть нужно найти соотношение высот выбранного радиатора со стандартным, а затем использовать этот коэффициент для корректировки результата.


Для наглядности рассчитаем алюминиевые радиаторы по площади. Помещение то же: 16м2. Считаем количество секций стандартным размером: 16м 2 / 2м 2 = 8шт. Но мы хотим использовать небольшие секции высотой 40 см. Находим соотношение радиаторов выбранного размера к стандартным: 50см / 40см = 1,25. А теперь регулируем количество: 8шт * 1,25 = 10шт.

Коррекция в зависимости от режима системы отопления

Производители в паспортных данных указывают максимальную мощность радиаторов: в высокотемпературном режиме использования — температура теплоносителя в подаче 90 ° С, в обратном — 70 ° С (обозначается 90/70). корпус в комнате должен быть 20 ° С.Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средней мощности 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что расчет нужно откорректировать.

Для учета режима работы системы необходимо определить температурный напор системы. Температурный напор — это разница между температурой воздуха и обогревателей. В этом случае температура отопительных приборов рассматривается как среднее арифметическое между значениями подачи и возврата.


Для наглядности рассчитаем чугунные радиаторы отопления на два режима: высокотемпературный и низкотемпературный, стандартные размеры секций (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 нагревает 1,5м2. Следовательно нам нужно 16м 2 / 1,5м 2 = 10,6 шт. Округление — 11 шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь находим температурный напор для каждой из систем:

  • высокотемпературный 90/70 / 20- (90 + 70) / 2-20 = 60 о С;
  • низкая температура 55/45/20 — (55 + 45) / 2-20 = 30 о С.

То есть при использовании низкотемпературного режима работы потребуется вдвое больше секций для обогрева помещения. Для нашего примера для комнаты площадью 16 м 2 требуется 22 секции чугунных радиаторов. Получается большая батарея. Это, кстати, одна из причин, по которой данный вид отопительных приборов не рекомендуется использовать в сетях с низкими температурами.

С помощью этого расчета вы можете учесть желаемую температуру воздуха. Если вы хотите, чтобы в комнате было не 20 ° C, а, например, 25 ° C, просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент.Сделаем расчет для тех же чугунных радиаторов: параметры будут 90/70/25. Считаем температурный напор для этого случая (90 + 70) / 2-25 = 55 ° С. Теперь находим соотношение 60 ° С / 55 ° С = 1,1. Для обеспечения температуры 25 ° С нужно 11шт * 1,1 = 12,1шт.

Зависимость мощности радиатора от подключения и расположения

Помимо всех параметров, описанных выше, теплоотдача радиатора различается в зависимости от типа подключения.Оптимальным считается диагональное соединение с потоком сверху, в этом случае потери тепловой мощности отсутствуют. Наибольшие потери наблюдаются при боковом подключении — 22%. Все остальные средние по эффективности. Примерно процентные потери показаны на рисунке.


Фактическая мощность радиатора также уменьшается при наличии препятствий. Например, если сверху свисает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери составляют 3-5%.При установке сетчатого экрана, не доходящего до пола, потери примерно такие же, как и при нависании подоконника: 7-8%. Но если экран полностью закрывает весь нагревательный прибор, его теплоотдача снижается на 20-25%.



Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышесказанное справедливо для случая, когда охлаждающая жидкость с одинаковой температурой поступает на ввод каждого из радиаторов.Считается намного сложнее: там при каждом последующем нагревателе вода течет все более и более холодной. А если вы хотите рассчитать количество радиаторов для однотрубной системы, вам нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а затем, пропорционально падению тепловой мощности, добавить секции для увеличения теплопередачи батареи в целом.


Проиллюстрируем на примере.На схеме изображена однотрубная система отопления с шестью радиаторами. Количество аккумуляторов определялось для двухтрубной разводки. Теперь вам нужно внести коррективы. Для первого обогревателя все осталось по-прежнему. Второй — с охлаждающей жидкостью с более низкой температурой. Определяем% падения мощности и увеличиваем количество секций на соответствующее значение. На картинке получается так: 15кВт-3кВт = 12кВт. Находим процент: перепад температуры 20%. Соответственно, для компенсации увеличиваем количество радиаторов: если бы нужно было 8 штук, было бы на 20% больше — 9 или 10 штук.Здесь пригодится знание комнаты: если это спальня или детская, округлить вверх, если гостиная или другая подобная комната, округлить вниз. Учитывайте расположение относительно сторон света: на севере круглая к большему, на юге — к меньшему.


Этот способ явно не идеален: ведь получается, что последняя батарея в ветке просто должна быть огромной: судя по схеме на ее ввод подается теплоноситель с удельной теплоемкостью, равной его мощности, а на практике убрать все 100% нереально.Поэтому при определении мощности котла для однотрубных систем обычно берут определенный запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было регулировать теплопередачу, и тем самым компенсировать падение температуры охлаждающая жидкость. Все это подразумевает одно: количество и / или размеры радиаторов в однотрубной системе необходимо увеличивать, а по мере удаления от начала ответвления ставить все больше и больше секций.

Сводка

Примерный расчет количества секций радиаторов прост и быстр.Но уточнение, зависящее от всех особенностей помещения, размеров, типа подключения и расположения, требует внимания и времени. Но определиться с количеством отопительных приборов для создания комфортной атмосферы зимой можно точно.

Правильный расчет радиаторов отопления — довольно важная задача для каждого домовладельца. При использовании недостаточного количества секций помещение не будет прогреваться в зимние холода, а покупка и эксплуатация слишком больших радиаторов повлечет за собой неоправданно высокие затраты на отопление.Поэтому при замене старой системы отопления или установке новой нужно знать, как рассчитать радиаторы отопления. Для стандартных помещений можно использовать простейшие расчеты, но иногда возникает необходимость учитывать различные нюансы, чтобы получить максимально точный результат.

Расчет по площади

Предварительный расчет можно сделать, ориентируясь на площадь помещения, для которого покупаются радиаторы. Это очень простой расчет, который подходит для помещений с низкими потолками (2.40-2,60 м). Согласно строительным нормам, для отопления потребуется 100 ватт тепловой мощности на квадратный метр площади.

Рассчитываем количество тепла, которое потребуется для всего помещения. Для этого площадь умножаем на 100 Вт, т.е. на комнату 20 кв. м. расчетная тепловая мощность составит 2000 Вт (20 кв.м X 100 Вт) или 2 кВт.


Правильный расчет радиаторов отопления необходим для обеспечения достаточного тепла в доме

Этот результат необходимо разделить на теплоотдачу одной секции, указанную производителем.Например, если она равна 170 Вт, то в нашем случае необходимое количество секций радиатора будет:

2000 Вт / 170 Вт = 11,76, т.е. 12, так как результат нужно округлить до ближайшего целого числа. Округление обычно осуществляется в сторону увеличения, однако для помещений, в которых теплопотери ниже средних, например, для кухни, можно округлить в меньшую сторону.

Обязательно учитывайте возможные потери тепла в зависимости от конкретной ситуации. Конечно, комната с балконом или расположенная в углу здания быстрее теряет тепло.В этом случае следует увеличить значение расчетной тепловой мощности для помещения на 20%. Примерно на 15-20% следует увеличить расчеты, если вы планируете прятать радиаторы за экраном или монтировать их в нише.

Расчеты в зависимости от объема помещения

Более точные данные можно получить, рассчитав сечения радиаторов отопления с учетом высоты потолка, т.е.по объему помещения. Принцип здесь примерно такой же, как и в предыдущем случае.Сначала рассчитывается общая потребность в тепле, затем рассчитывается количество секций радиатора.


Если радиатор закрыт экраном, необходимо увеличить потребность помещения в тепловой энергии на 15-20%

Согласно рекомендациям СНИП, для обогрева каждого кубометра жилой площади в панельном доме требуется 41 Вт тепловой мощности. Умножив площадь комнаты на высоту потолка, получаем общий объем, который умножаем на это нормативное значение.Для квартир с современными стеклопакетами и внешней изоляцией тепла потребуется меньше, всего 34 Вт на кубометр.

Например, рассчитываем необходимое количество тепла для комнаты площадью 20 кв.м. с высотой потолков 3 метра. Объем помещения составит 60 кубометров (20 кв.м. X 3 м.). Расчетная тепловая мощность в этом случае будет равна 2460 Вт (60 кубометров X 41 Вт).

А как посчитать количество радиаторов? Для этого необходимо разделить данные, полученные по теплоотдаче одного участка, указанного производителем.Если взять, как в предыдущем примере, 170 Вт, то для комнаты вам потребуется: 2460 Вт / 170 Вт = 14,47, т.е. 15 секций радиатора.

Производители стремятся указывать чрезмерные показатели теплоотдачи своей продукции, предполагая, что температура теплоносителя в системе будет максимальной. В реальных условиях это требование соблюдается редко, поэтому стоит ориентироваться на минимальные показатели теплоотдачи одной секции, которые отражены в паспорте изделия. Это сделает расчеты более реалистичными и точными.

Что делать, если нужен очень точный расчет?

К сожалению, не каждую квартиру можно считать стандартной. Тем более это касается частных жилых домов. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для этого вам нужно будет учесть множество различных факторов.


При расчете количества секций обогрева необходимо учитывать высоту потолка, количество и размер окон, наличие утеплителя стен и т. Д.

Особенность этого метода в том, что при расчете необходимого количества тепла используется ряд факторов, учитывающих характеристики конкретного помещения, которые могут повлиять на его способность накапливать или отдавать тепловую энергию. Формула для расчетов следующая:

КТ = 100Вт / кв.м. * P * K1 * K2 * K3 * K4 * K5 * K6 * K7 где

CT — количество тепла, необходимое для конкретного помещения;
P — площадь номера, кв.м .;
К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным стеклопакетом — 1,27;
  • для стеклопакетов — 1,0;
  • для окон с тройным остеклением — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0.85.

К3 — соотношение площади окон и пола в комнате:

  • 50% — 1,2;
  • 40% — 1,1;
  • 30% — 1,0;
  • 20% — 0,9;
  • 10% — 0,8.

К4 — коэффициент, позволяющий учитывать среднюю температуру воздуха в самую холодную неделю года:

  • на -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • на -20 градусов — 1,1;
  • для -15 градусов — 0.9;
  • для -10 градусов — 0,7.

К5 — регулирует потребность в тепле с учетом количества внешних стен:

  • одностенная — 1,1;
  • две стены — 1,2;
  • трехстенный — 1,3;
  • четыре стены — 1.4.

К6 — с учетом типа помещения, расположенного выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемая жилая — 0,8

К7 — коэффициент, учитывающий высоту потолков:

  • на 2.5 м — 1,0;
  • на 3,0 м — 1,05;
  • на 3,5 м — 1,1;
  • на 4,0 м — 1,15;
  • на 4,5 м — 1,2.

Такой расчет количества радиаторов отопления включает практически все нюансы и основан на достаточно точном определении потребности помещения в тепле.

Осталось результат разделить на величину теплоотдачи одной секции радиатора и округлить результат до целого числа.

Некоторые производители предлагают более простой способ получить ответ.На их сайтах вы можете найти удобный калькулятор, специально предназначенный для этих расчетов. Для использования программы нужно ввести необходимые значения в соответствующие поля, после чего отобразится точный результат. Или вы можете использовать специальное программное обеспечение.

Одним из важнейших вопросов создания комфортных условий проживания в доме или квартире является надежная, правильно рассчитанная и смонтированная, сбалансированная система отопления. Именно поэтому создание такой системы — важнейшая задача при организации строительства собственного дома или при капитальном ремонте в многоквартирном доме.

Несмотря на современное разнообразие систем отопления различных типов, проверенная схема по-прежнему остается лидером по популярности: контуры труб с циркулирующим по ним теплоносителем и теплообменников — радиаторов, установленных в помещениях. Казалось бы, все просто, батареи стоят под окнами и обеспечивают необходимый обогрев … Однако необходимо знать, что теплоотдача от радиаторов отопления должна соответствовать как площади помещения, так и площади. ряд других конкретных критериев.Теплотехнические расчеты по требованиям СНиП — достаточно сложная процедура, выполняемая специалистами. Тем не менее, осуществить это можно самостоятельно, естественно, с приемлемым упрощением. В данной публикации будет рассказано, как самостоятельно рассчитать батареи отопления на площадь отапливаемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы вкратце ознакомиться с существующими радиаторами отопления — от их параметров во многом будут зависеть результаты расчетов.

Кратко о существующих типах радиаторов

Современный ассортимент представленных в продаже радиаторов включает в себя следующие типы:

  • Радиаторы стальные панельной или трубчатой ​​конструкции.
  • Аккумуляторы чугунные.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Радиаторы стальные

Этот тип радиатора не получил особой популярности, несмотря на то, что некоторым моделям придают очень элегантный дизайн.Проблема в том, что недостатки таких теплопередающих устройств значительно превышают их достоинства — невысокая цена ¸ относительно небольшая масса и простота монтажа.


Тонкие стальные стенки таких радиаторов недостаточно теплоемки — быстро нагреваются, но так же быстро остывают. Проблемы могут возникнуть с гидроударами — сварные стыки листов иногда протекают. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, а срок службы таких аккумуляторов невелик — обычно производители дают им довольно короткую гарантию на продолжительность эксплуатации.

Стальные радиаторы в подавляющем большинстве случаев представляют собой цельную конструкцию, и они не позволяют изменять теплоотдачу путем изменения количества секций. У них есть паспортная тепловая мощность, которую сразу нужно подбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение — у некоторых трубчатых радиаторов есть возможность изменять количество секций, но обычно это делается на заказ, при изготовлении, а не дома.

Радиаторы чугунные

Представители этого типа аккумуляторов наверняка знакомы каждому с раннего детства — именно такие гармошки раньше устанавливались буквально повсюду.


Возможно, такие батареи МС-140-500 не отличались особым изяществом, но прослужили не одному поколению жителей. Каждая секция такого радиатора обеспечивала теплоотдачу 160 Вт. Радиатор сборный, и количество секций в принципе ничем не ограничивалось.


В настоящее время в продаже много современных чугунных радиаторов. Они уже отличаются более элегантным внешним видом, гладкими гладкими внешними поверхностями, облегчающими уборку.Также доступны эксклюзивные варианты, с интересным рельефным рисунком заливки чугуна.

При этом такие модели полностью сохраняют основные достоинства чугунных аккумуляторов:

  • Высокая теплоемкость чугуна и массивность аккумуляторов способствуют длительной сохранности и высокой теплоотдаче.
  • Чугунные батареи, при правильной сборке и качественной герметизации стыков, не боятся ударов воды, перепадов температур.
  • Толстые чугунные стенки мало подвержены коррозии и абразивному износу.Может использоваться практически любой теплоноситель, поэтому такие батареи одинаково хороши как для автономных систем, так и для систем центрального отопления.

Если не учитывать внешние данные старых чугунных аккумуляторов, то одним из недостатков является хрупкость металла (недопустимы акцентированные удары), относительная сложность установки, связанная скорее с массивностью. К тому же ни в коем случае никакие стеновые перегородки не смогут выдержать вес таких радиаторов.

Радиаторы алюминиевые

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность.Они относительно недорогие, имеют современный, довольно элегантный внешний вид и обладают отличным теплоотводом.


Качественные алюминиевые аккумуляторы способны выдерживать давление от 15 и более атмосфер, высокую температуру охлаждающей жидкости около 100 градусов. При этом тепловая отдача от одной секции в некоторых моделях иногда достигает 200 Вт. Но при этом они имеют небольшой вес (вес секции — обычно до 2 кг) и не требуют большого объема охлаждающей жидкости (емкость — не более 500 мл).

Алюминиевые радиаторы продаются как многоярусные батареи, с возможностью изменения количества секций, так и монолитные изделия, рассчитанные на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы алюминия очень чувствительны к кислородной коррозии, в этом случае существует высокий риск газообразования. Это предъявляет особые требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, при определенных неблагоприятных условиях могут протекать на стыках.При этом провести ремонт просто невозможно, и менять придется всю батарею целиком.

Из всех алюминиевых аккумуляторов самого высокого качества изготавливаются с использованием анодного окисления металла. Эти изделия практически не боятся кислородной коррозии.

Внешне все алюминиевые радиаторы примерно одинаковы, поэтому нужно внимательно читать техническую документацию, делая выбор.

Радиаторы отопления биметаллические

Такие радиаторы по надежности оспаривают первенство с чугуном, а по тепловому КПД — с алюминием.Причина тому — их особый дизайн.


Каждая из секций состоит из двух стальных горизонтальных коллекторов, верхнего и нижнего (поз. 1), соединенных одним и тем же стальным вертикальным каналом (поз. 2). Подключение к одиночному аккумулятору осуществляется качественными резьбовыми соединениями (поз. 3). Высокая теплоотдача обеспечивается внешней алюминиевой оболочкой.

Стальные внутренние трубы изготавливаются из металла, не подверженного коррозии, или имеют защитное полимерное покрытие.Что ж, алюминиевый теплообменник ни в коем случае не контактирует с охлаждающей жидкостью, и коррозия для него совершенно не проблема.

Таким образом, достигается сочетание высокой прочности и износостойкости с отличными тепловыми характеристиками.

Такие батареи не боятся даже очень больших скачков давления, высоких температур. По сути, они универсальны, подходят для любой системы отопления, но при этом демонстрируют наилучшие эксплуатационные характеристики в условиях высокого давления центральной системы — для контуров с естественной циркуляцией малопригодны.

Пожалуй, единственный их недостаток — высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия помещена таблица, в которой приведены сравнительные характеристики радиаторов отопления. Легенда в нем:

  • ТС — трубчатая стальная;
  • Чг — чугун;
  • Al — алюминий обыкновенный;
  • AA — алюминий анодированный;
  • ВМ — биметаллический.
Th TS Al AA BM
Максимальное давление (атмосферы)
рабочий 6-9 6-12 10-20 15-40 35
опрессовка 12-15 9 15-30 25-75 57
разрушение 20-25 18-25 30-50 100 75
Предел pH (pH) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии:
кислород нет да нет нет да
паразитные токи нет да да нет да
электролитический пар нет слабый да нет слабый
Мощность сечения при h = 500 мм; Дт = 70 °, Ш 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10
Видео: рекомендации по выбору радиаторов отопления

Как рассчитать необходимое количество секций радиатора

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечивать обогрев до комфортной температуры и компенсировать неизбежные тепловые потери независимо от погоды на улице.

Базовым значением для расчетов всегда является площадь или объем комнаты. Сами по себе профессиональные расчеты очень сложны и учитывают очень большое количество критериев. Но для бытовых нужд можно использовать упрощенные методы.

Самые простые способы расчета

Принято считать, что 100 Вт на квадратный метр площади достаточно для создания нормальных условий в стандартной гостиной. Таким образом, следует всего лишь посчитать площадь комнаты и умножить ее на 100.

Q = S × 100

Q — необходимый теплоотвод от радиаторов отопления.

S — площадь отапливаемого помещения.

Если вы планируете установить неразборный радиатор, то это значение станет ориентиром для выбора необходимой модели. В случае установки батарей, допускающих изменение количества секций, необходимо произвести еще один расчет:

N = Q / Qus

N — расчетное количество секций.

Qus — удельная тепловая мощность одной секции. Это значение обязательно указывается в техническом паспорте товара.

Как видите, эти расчеты предельно просты и не требуют специальных знаний математики — достаточно рулетки, чтобы обмерить комнату, и листка бумаги для расчетов. Кроме того, можно воспользоваться таблицей ниже — уже есть расчетные значения для помещений разной площади и удельной мощности нагревательных секций.

Таблица секций

Однако необходимо помнить, что эти значения приведены для стандартной высоты потолка (2,7 м) многоэтажного дома. Если высота помещения разная, то количество аккумуляторных секций лучше рассчитывать исходя из объема помещения. Для этого используется средний показатель — 41 Вт при номинальной мощности на 1 м³ объема в панельном доме или 34 Вт в кирпичном доме.

Q = S × ч × 40 (34)

, где h — высота потолка над уровнем пола.

Дальнейший расчет — не отличается от приведенного выше.

Детальный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Описанная выше упрощенная процедура расчета может преподнести сюрприз владельцам дома или квартиры. Установленные радиаторы не создадут необходимый комфортный микроклимат в жилых помещениях. И причина тому — целый список нюансов, которые метод просто не учитывает.Между тем такие нюансы могут быть очень важны.

Итак, за основу снова берется площадь помещения и все те же 100 Вт на м². Но сама формула уже выглядит немного иначе:

Q = S × 100 × A × B × C × D × E × F × G × H × Я × Дж

Буквы от И до J Коэффициенты условно обозначаются с учетом особенностей помещения и установки в нем радиаторов.Рассмотрим их по порядку:

А — количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть чем больше в помещении внешних стен, тем выше общие теплопотери. Эта зависимость учитывает коэффициент И :

  • Одна наружная стенка — А = 1,0
  • Две внешние стены — А = 1,2
  • Три наружные стены — А = 1.3
  • Все четыре стены внешние — А = 1,4

По — ориентация комнаты по сторонам света.

Максимальная потеря тепла всегда в помещениях, не попадающих под прямые солнечные лучи. Это, конечно же, северная сторона дома, и сюда же можно включить и восточную — лучи Солнца приходят сюда только по утрам, когда солнце «еще не на полную мощность».


Южная и западная стороны дома всегда намного сильнее нагреваются солнцем.

Отсюда — значения коэффициента В :

  • Помещение выходит на север или восток — В = 1,1
  • Южный или западный номер — В = 1, то есть может не учитываться.

C — коэффициент, учитывающий степень утепления стен.

Понятно, что потери тепла из отапливаемого помещения будут зависеть от качества теплоизоляции наружных стен. Значение коэффициента СО примите равным:

  • Средний уровень — стены кладут в два кирпича, либо предусмотрено утепление их поверхности другим материалом — С = 1.0
  • Наружные стены не утеплены — С = 1,27
  • Высокий уровень теплоизоляции по теплотехническим расчетам — С = 0,85.

D — особенности климатических условий региона.

Естественно, что «под одну гребенку» сравнять все основные показатели необходимой тепловой мощности невозможно — они также зависят от уровня зимних отрицательных температур, характерных для той или иной местности.При этом учитывается коэффициент D. На его выбор берутся средние температуры самой холодной декады января — обычно это значение легко уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже — D = 1,5
  • -25 ÷ — 35 ° С — D = 1,3
  • к — 20 ° С — D = 1,1
  • не ниже — 15 ° С — D = 0,9
  • не ниже — 10 ° С — D = 0.7

E — коэффициент высоты потолка помещения.

Как уже упоминалось, 100 Вт / м² — это среднее значение для стандартной высоты потолка. Если он другой, следует ввести поправочный коэффициент. E :

  • До 2,7 м — E = 10
  • 2,8 — 3, 0 м — E = 105
  • 3,1 — 3, 5 мес. E = 1, 1
  • 3,6 — 4, 0 м — E = 1.15
  • Более 4,1 м — E = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше.

Устройство системы отопления в помещениях с холодным полом — занятие бессмысленное, и хозяева всегда принимают меры в этом вопросе. Но зачастую тип помещения, расположенного наверху, от них зачастую не зависит. А между тем, если сверху будет жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение — Ф = 1.0
  • утепленная мансарда (в т.ч.- и утепленная крыша) — F = 0,9
  • отапливаемое помещение — Ф = 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции неодинаково подвержены тепловым потерям. При этом учитывается коэффициент G:

  • обыкновенные деревянные рамы с двойным остеклением — G = 1,27
  • Окна
  • комплектуются однокамерным стеклопакетом (2 стекла) — G = 1.0
  • однокамерный стеклопакет с аргоновым заполнением или стеклопакет (3 стекла) — G = 0,85

H — коэффициент площади остекления помещения.

Суммарная величина теплопотерь зависит также от общей площади окон, установленных в помещении. Эта величина рассчитывается исходя из отношения площади окон к площади комнаты. В зависимости от результата находим коэффициент N :

  • Коэффициент меньше 0.1 — Н = 0, 8
  • 0,11 ÷ 0,2 — Н = 0, 9
  • 0,21 ÷ 0,3 — H = 1 0
  • 0,31 ÷ 0,4 — H = 1 1
  • 0,41 ÷ 0,5 — H = 1,2

I– коэффициент с учетом схемы подключения радиатора.

Теплопередача зависит от того, как радиаторы подключены к подающему и обратному трубопроводу. Это также следует учитывать при планировании монтажа и определении необходимого количества секций:


  • а — подключение диагональное, подача сверху, обратка снизу — I = 1,0
  • б — одностороннее соединение, поток сверху, возврат снизу — I = 1.03
  • c — подключение двухстороннее, а подающая и обратная снизу — I = 1,13
  • г — диагональное подключение, подача снизу, обратка сверху — I = 1,25
  • d — одностороннее соединение, подача снизу, обратка сверху — I = 1,28
  • э — одностороннее нижнее соединение возврата и подачи — I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит от того, насколько открыты установленные батареи для свободного теплообмена с воздухом в помещении. Существующие или искусственно созданные преграды могут значительно снизить теплопередачу радиатора. При этом учитывается коэффициент Дж:


а — радиатор расположен открыто на стене или не прикрыт подоконником — Дж = 0,9

б — радиатор сверху прикрыт подоконником или полкой — Дж = 1.0

c — радиатор сверху прикрыт горизонтальным выступом пристенной ниши — Дж = 1,07

д — радиатор сверху прикрыт подоконником, а с лицевой стороны — детали, покрытые декоративным кожухом — Дж = 1,12

d — радиатор полностью прикрыт декоративным кожухом — Дж = 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот наконец и все.Теперь вы можете подставить в формулу необходимые значения и соответствующие коэффициенты, и на выходе будет получена необходимая тепловая мощность для надежного обогрева помещения с учетом всех нюансов.

После этого остается либо выбрать неразборный радиатор с желаемой теплоотдачей, либо рассчитанное значение разделить на удельную теплоемкость одной секции аккумулятора выбранной модели.

Наверняка многим такой расчет кажется излишне громоздким, что легко запутаться.Для облегчения расчетов предлагаем воспользоваться специальным калькулятором — в нем уже есть все необходимые значения. Пользователю нужно только ввести запрашиваемые начальные значения или выбрать нужные элементы из списков. Кнопка «рассчитать» сразу приведет к точному результату с округлением в большую сторону.

Помещения со стандартной высотой потолков

Расчет количества секций радиаторов отопления для типового дома производится исходя из площади комнат.Площадь комнаты в типовой постройке рассчитывается путем умножения длины комнаты на ее ширину. Чтобы обогреть 1 квадратный метр, требуется 100 Вт мощности нагревателя, а для расчета общей мощности нужно полученную площадь умножить на 100 Вт. Полученное значение означает общую мощность нагревателя. В документации на радиатор обычно указывается тепловая мощность одной секции. Чтобы определить количество секций, вам нужно разделить общую мощность на это значение и округлить результат в большую сторону.

Пример расчета:

Помещение шириной 3,5 метра и длиной 4 метра с обычной высотой потолков. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество разделов.

  1. Определяем площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
  2. Находим суммарную мощность ТЭНов 14 · 100 = 1400 Вт.
  3. Находим количество секций: 1400/160 = 8.75. Округлите до большего значения и получите 9 секций.


Для помещений, расположенных в конце здания, расчетное количество радиаторов необходимо увеличить на 20%.

Помещения с высотой потолка более 3 метров

Расчет количества секций отопительных приборов для помещений с высотой потолка более трех метров проводится от объема помещения. Объем — это площадь, умноженная на высоту потолков. Для обогрева 1 кубометра помещения требуется 40 Вт тепловой мощности отопительного прибора, а его общая мощность рассчитывается умножением объема помещения на 40 Вт.Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.

Пример расчета:

Помещение шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 метра. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество секций радиаторов.

Также можно воспользоваться таблицей:


Как и в предыдущем случае, для угловой комнаты эту цифру нужно умножить на 1.2. Также необходимо увеличить количество секций, если в помещении имеется один из следующих факторов:

  • Находится в панельном или плохо изолированном доме;
  • Расположен на первом или последнем этаже;
  • Имеет более одного окна;
  • Находится рядом с неотапливаемыми комнатами.

В этом случае полученное значение необходимо умножить на коэффициент 1,1 для каждого из коэффициентов.

Пример расчета:

Угловая комната шириной 3.5 метров и длиной 4 метра, при высоте потолков 3,5 м. Находится в панельном доме на первом этаже, имеет два окна. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество секций радиаторов.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
  2. Объем помещения находим, умножив площадь на высоту потолков: 14 · 3,5 = 49 м 3.
  3. Находим общую мощность радиатора отопления: 49 · 40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем и получаем 13 секций.
  5. Умножьте полученную сумму на коэффициенты:

Угловая комната — коэффициент 1,2;

Панельный дом — коэффициент 1,1;

Два окна — коэффициент 1,1;

Цокольный этаж — коэффициент 1,1.

Таким образом, получаем: 13 · 1,2 · 1,1 · 1,1 · 1,1 = 20,76 сечения. Округляем до большего целого числа — 21 секция радиаторов отопления.

При расчетах следует учитывать, что разные типы радиаторов отопления имеют разную теплоемкость. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которые соответствуют.


Для максимальной теплоотдачи от радиаторов необходимо установить их в соответствии с рекомендациями производителя, соблюдая все расстояния, указанные в паспорте. Это способствует лучшему распределению конвективных потоков и снижает теплопотери.

(PDF) Экспериментальный анализ тепловой мощности радиаторов для учета тепла

[3] А. Ферреро, Р. Марчези, Основы техники измерений, Справочник НАТО по измерениям

, 2002, стр. 9-17.

[4] Ф. Арпино и др., Влияние условий установки на тепловую мощность нагревательных элементов: предварительные экспериментальные результаты

, в: Энергетические процедуры, 2016, стр. 74-80.

[5] S. Peach, Радиаторы и другие конвекторы, J.Inst. Отопление вентил. Eng., 39 (2) (1972), стр. 239-253.

[6] EN 442-1, Радиаторы и конвекторы — часть 1: технические условия и требования, (2014).

[7] EN 442-2, Радиаторы и конвекторы — часть 2: методы испытаний и рейтинг, (2014).

[8] UNI 10200, Централизованные централизованные климатические установки и санитарное производство, 2013.

[9] Л. Брэди, М. Абделлатиф, Дж. Каллен, Дж. Мэддокс, А. Аль-Шаммаа, Исследование влияния декоративных покрытий

на тепловую мощность радиаторов LPHW, Energy Build. 2016. Т. 133. С. 414–422.

[10] Embaye, R.K. Аль-Дада, С. Махмуд, Численная оценка теплового комфорта в помещении и энергосбережения

путем эксплуатации панельного радиатора отопления при различных стратегиях потока, Энергия и здания, 121 (2016), стр. 298–

308.

[11] Калисир Т. и др., Экспериментальное исследование увеличения теплоотдачи панельного радиатора для эффективного использования тепла

в реальных условиях эксплуатации, EPJ Web of Conferences, 92 (2015). EFM14. — Experimental Fluid

Mechanics 2014.

[12] EN 834, Распределители затрат на тепло для определения потребления радиаторов отопления помещений.

Приборы с электроснабжением, 2013.

[13] S.M.B. Бек и др., Новый дизайн для панельных радиаторов, Прикладная теплотехника, 24 (8-9) (2004), стр.

1291-1300.

[14] I.C. Ward BSc, Бытовые радиаторы: производительность при более низком массовом расходе и более низких температурах

дифференциалов, чем те, которые указаны в стандартных тестах производительности Building Serv. Англ. Res. Technol., 12 (3) (1991),

, с. 87-94.

[15] Р. Маркези, La camera termostatica di riferimento europeo, La Termotecnica, 2 (1998), стр.75-89.

[16] Р. Марчези, Калибровка испытательных систем для определения тепловой мощности радиаторов и конвекторов,

SMT4 CT96-2127 Final Report, Брюссель, 1999.

[17] Р. Марчези и др. , Технические характеристики испытательного помещения на основе исследовательской программы, проведенной по адресу

Dipartimento di Energetica del Politecnico di Milano, CEN TC-130, doc. п. 45, 1989.

[18] Л. Селенца и др., Экономическая и техническая осуществимость систем измерения и суб-измерения для учета тепла

, Международный журнал экономики и политики энергетики, 6 (3) (2016), стр.581-587.

[19] Дж. Фикко и др., Экспериментальное сравнение систем учета тепла в жилых домах в критических условиях,

Энергия и здания, 130 (2016), стр. 477-487.

[20] EN 1434-1, Теплосчетчики — Часть 1: общие требования, (2015).

[21] H.W. Coleman, WG Steele, Experimentation and Uncertainty Analysis for Engineers, 2nd, USA, 1999.

[22] Дж. Бетта и др., Методы экспериментального проектирования для оптимизации калибровки измерительной цепи,

Измерение: Журнал Международной Конфедерации Измерений , 30 (2) (2001), стр.115-127.

[23] М. Делль’Исола, Г. Фикко, Ф. Арпино, Г. Кортелесса, Л. Канале, Новая модель для оценки надежности систем учета тепла

в жилых зданиях, Энергетика и здания, 150 ( 2017), стр. 281-293.

[24] М. Саиди, Р. Х. Абардех, Зависимость естественной конвективной теплопередачи от давления воздуха, Всемирный конгресс

Engineering WCE2010, Лондон, Великобритания, 2010.

Отправлено: 1.03.2017.

После доработки: 3.07.2017.

Принята в печать: 10.07.2017.

Жилой — Гидравлический — Специальные радиаторы

Как определить расход

Скорость потока через радиатор Runtal (или серию радиаторов) зависит от длины радиатора (или общей длины серии радиаторов), а также расчетной температуры воды на входе (EWT) и расчетной температуры воды на выходе (LWT). .

Дизайнер выбирает дизайн EWT и LWT. Например, он может выбрать 170 ° F в качестве EWT и 150 ° F в качестве LWT.Средняя точка между этими двумя температурами называется средней температурой воды (AWT), и в этом примере AWT составляет 160 ° F.

Графики теплопроизводительности Runtal основаны на теплопроизводительности на фут радиатора на основе выбранной проектировщиком AWT, и эта теплопроизводительность на фут выражается в единицах BTUH / FT при заданном AWT. Требуемый расход (галлонов в минуту) рассчитывается следующим образом:

Расход = (теплопроизводительность / опора X длина радиатора)

DT –LWT) X 500]

(EWT — LWT) обычно называют «Дельта Т» или «DT».

Следовательно, наша формула расхода принимает следующий вид:

галлонов в минуту = (BTUH / FT X FT радиатора) DT (DT X 500)

В качестве примера предположим, что нашему проектировщику требуется мощность 445 БТЕЧ / фут на длине стены
10′-0 дюймов, и он выбрал расчетную температуру воды как EWT = 170 ° F и LWT = 150 ° F. Это означает, что наш AWT составляет 160 ° F. Глядя на диаграмму теплопроизводительности радиатора Runtal типа «R», мы видим, что радиатор R-4 дает нам требуемые 445 BTUH / FT при 160 ° F AWT. Следовательно, требуемый расход для радиатора R-4 длиной 10′-0 ″ составляет:

галлонов в минуту = (445 BTUH / FT X 10 футов) DT (20 ° F DT X 500) = 0.445 галлонов в минуту

Обратите внимание, что существуют различные комбинации EWT и LWT, которые могут привести к одному и тому же AWT. В нашем примере выше, например, 180 ° F EWT и 140 ° F LWT приводят к одному и тому же AWT 160 ° F. Благодаря уникальной конструкции плоской водяной трубы Runtal возможны перепады температуры до 60 ° F, не беспокоясь о том, что скорость потока слишком мала для теплопередачи (дополнительную информацию см. В разделе «Советы по проектированию»).

Что касается максимального расхода для радиаторов Runtal, мы рекомендуем не более 1.5 галлонов в минуту на водяную трубку. Для нашего примера с R-4, приведенного выше, это будет означать максимальную скорость потока 6 галлонов в минуту для радиатора с противоположным концом или 3 галлона в минуту для радиатора с таким же концом (дополнительную информацию см. В разделе «Советы по проектированию»).

(PDF) Влияние коэффициента излучения стен на тепловую мощность радиатора

моделирование такого рода проблем. Точное положение от ламинарной до турбулентной точки пробоя

в условиях свободной конвекции очень трудно установить,

, и модель CFD, очевидно, произвела эту точку

намного выше по зазору, чем это имеет место в реальной

. ситуация.

Существует большее согласие по разнице температур

(Рисунок 4). Видно, что температуры около стены

хорошо согласуются, показывая влияние излучения

на температуру стенки. Еще раз, для

причин, перечисленных ранее, CFD показывает более крутой градиент температуры на

около радиатора

, чем эксперимент. Тем не менее, нет никаких сомнений в том, что коэффициент излучения задней стенки

является существенным фактором передачи тепла от задней поверхности

радиатора.

Экспериментальные результаты в Таблице 1 показывают

, что имеется 20% увеличение теплоотдачи

с тыльной стороны радиатора, когда стена

позади него имеет более высокий коэффициент излучения. Линейная экстраполяция этого результата показывает, что выход радиатора с одним блоком (пластиной)

будет увеличен на

10% и удвоенный на 5%. Низкий коэффициент излучения поверхности

приводит к тому, что от

радиатора отводится меньше тепла, поскольку лучистая энергия

отражается прямо обратно в радиатор.Большее увеличение тепловыделения на

, наблюдаемое в модели CFD

, можно отчасти объяснить сложностью этой формы моделирования

, а также отсутствием третьего измерения

.

Процесс теплопередачи в канале

за радиатором и его зависимость от излучательной способности стены

теперь изучены лучше. Модель CFD

указывает на то, что причина повышенной теплопередачи

заключается в том, что излучение от источника тепла

к черной стене вызывает его нагрев.

Это вызывает повышение температуры его поверхности выше

температуры входящего воздуха, поэтому тепло передается конвекцией

от стены к воздуху. Чем горячее поверхность стены

, тем лучше становится свободная конвекция

. Эти эффекты объясняют как увеличение на

тепла, передаваемого воздуху, так и увеличение скорости воздуха на

, наблюдаемое как в расчетах

, так и экспериментально.

Показания температуры стен показывают, что если

отражатель имеет тот же размер, что и радиатор, то

это уменьшит потери тепла через стену

в достаточной степени.Однако, если из эстетических соображений требуется, чтобы лист

был меньше, его можно (для зазора 50

мм) уменьшить на 60 мм с каждой стороны, и

по-прежнему будет адекватно защищать стену от пиковых температур

. Значения теплопередачи

через стену, вероятно, будут другими в домашних условиях

, так как, хотя стена на

толще и ее теплопроводность меньше, наружная температура

будет ниже 20ºC.

Тот факт, что температура стенок была измерена

, позволяет оценить потери тепла через стену.

. Эта дополнительная теплопередача за пределы комнаты

от настенных излучателей известна как обратные потери

и легко рассчитывается.

13

Описанные результаты

могут позволить исправить это как

уравнение, показанное в CIBSE Guide

13

использует

температуру радиатора, что является правильным для

излучателей, установленных непосредственно на стене. , но слишком высокий

для тех, у которых есть воздушный зазор, где должна использоваться температура стены

.

Следует понимать, что количество тепла

, отдаваемое радиаторами, не является единственным конструктивным параметром

метра. Два других важных соображения:

— тепловой комфорт, который обеспечивает радиатор, и

— также время, необходимое излучателю для прогрева. Первый из них

не рассматривался в этом исследовании, но

ясно, что небольшая, очень горячая зона в комнате

нежелательна. Однако повышенная скорость

от радиатора, который использует излучение

, будет иметь тенденцию лучше распределять его тепло.Время прогрева

важно, особенно в связи с тем, что системы центрального отопления

обычно включают и выключают

как часть своей последовательности управления. Отечественные системы

обычно отключаются днем, а коммерческие

ночью. Радиаторы меньшего размера, которые правильно используют излучение

, уменьшат время работы в режиме нагрева

за счет получения такой же мощности от меньшего радиатора

, а это означает, что требуется меньше воды до

, нагретого до рабочей температуры.Тот факт

, что излучение действительно начинает быть основным фактором

только при более высоких перепадах температур, означает

, что выходная мощность будет менее оптимальной, если

радиатор не прогреется до полной рабочей температуры.

Это может создать впечатление, что система имеет на

большую тепловую инерцию при максимальной температуре

и меньше при нагревании;

желаемый случай.

SBM Beck et al. 193

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

где

q = теплопередача (W (J / с), британских тепловых единиц / час)

U = общий коэффициент теплопередачи (Вт / (м 2 K), британских тепловых единиц / (фут 2 час o F) )

A = площадь стены (м 2 , ft 2 )

dT = (t 1 — t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника — с потоком жидкости с каждой стороны стены — можно рассчитать как

1 / UA = 1 / h ci A i + Σ (s n / k n A n ) + 1 / h co A o (2)

где

U общий коэффициент теплопередачи (Вт / (м 2 K), BTU / (фут 2 час o F) )

k n = теплопроводность материала в слое n (Вт / (м · K), БТЕ / (час · фут · ° F) )

h ci, o = внутри или снаружи стены индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), BTU / (фут 2 ч o F) )

s n = толщина слоя n ( м, футы)

Плоская стена с равной площадью во всех слоях — можно упростить до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность — k — для некоторых типичных материалов (проводимость не зависит от температуры)

  • Полипропилен PP: 0.1 — 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 — 24 Вт / (м · К)
  • Алюминий: 205 — 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o фут)
  • 1 Вт / (м 2 Вт / (м · K) 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи — h — зависит от

  • тип жидкости — если это газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух — от 10 до 100 Вт / м 2 K
  • Вода — 500 до 10 000 Вт / м 2 K

Многослойные стены — Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A — площадь (м 2 , фут 2 )

t 1 — температура 1 ( o C, o F)

t 2 2920 температура 2 ( o C, o F)

h ci — коэффициент конвективной теплоотдачи внутри стены (Вт / (м 2 K), Btu / ( ft 2 h o F) )

s 1 — толщина 1 (м, фут) k 1 — теплопроводность 1 (Вт / (м K) , британских тепловых единиц / (час фут ° F) )

с 2 — толщина 2 (м, фут) k 2 — теплопроводность 2 (Вт / (м · К), Британские тепловые единицы / (час фут ° F) )

s 3 — толщина 3 (м, фут) k 3 — теплопроводность 3 (Вт / (м · К), БТЕ / (ч · фут · ° F) )

ч co — коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), Btu / (фут 2 ч o F) )

Теплопередача Тепловое сопротивление

быть выражено как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / W, футов 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стенкой равна одному сопротивлению
  • сама стена является одним сопротивлением
  • переносом между стенкой и t Вторая жидкость — это термическое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное термическое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / W
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • Внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • Внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример — теплообмен в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура теплообменника составляет 100 o C , а наружная температура 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / мК составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью

    • алюминий / mK :

    U Al = 1 / (1 / ( 50 Вт / м 2 K 90 171) + ( 0.1 мм ) (10 -3 м / мм) / (205 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

    = 25 Вт / м 2 K

    Теплопередача

    q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

    = 4000 Вт

    = 4 кВт

    03

    • 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 час o F)

    Типичный общий коэффициент теплопередачи

    • Свободный газ конвекции — свободный газ конвекции: U = 1-2 Вт / м 2 K (стандартное окно, воздух из помещения через стекло)
    • Газ без конвекции — принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
    • Свободная конвекция газа — конденсирующийся пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
    • Принудительная конвекция (проточная) Газ — Свободная конвекция Газ: U = 3-10 Вт / м 2 K (пароперегреватели)
    • Принудительная конвекция (проточный) Газ — Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
    • Принудительная конвекция (проточный) газ — Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 2041 K (газовые охладители)
    • Принудительная конвекция (проточный) Газ — Конденсирующий пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
    • Безжидкостная конвекция — принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
    • Жидкостная конвекция — свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
    • Без жидкости Конвекция — принудительный ток жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуарной воде , вода с рулевым управлением)
    • Конвекция без жидкости — Конденсирующийся пар воды: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
    • Принудительная жидкость (текущая) вода — газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера + излучение)
    • Принудительная жидкость (текущая) вода — Свободная конвекционная жидкость: U = 500 — 1500 Вт / м 2 K (охлаждающий змеевик — перемешиваемый)
    • Принудительная жидкость (текущая) вода — Принудительная жидкость (проточная вода): U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
    • Принудительная жидкая (проточная) вода — Конденсирующий пар водяной: U = 1000-4000 Вт / м 2 K (конденсаторы водяного пара)
    • Кипящая жидкая вода — свободный конвекционный газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
    • Кипящая жидкая вода — принудительное течение жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
    • Кипящая жидкая вода — Конденсирующий пар воды: U = 1500-6000 Вт / м 2 K (испарители пар / вода)
    .

Добавить комментарий