Точка росы зависит от – Точка росы — Википедия

Содержание

Точка росы — Википедия

На приведённой диаграмме представлено максимальное содержание водяного пара в воздухе на уровне моря в зависимости от температуры. Чем выше температура, тем выше равновесное парциальное давление пара.

Температура точки росы газа (точка росы) — значение температуры газа, при которой водяной пар, содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды[1].

Точка росы — это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

В строительстве согласно СП 50.13330.2012 п. Б.24 точка росы — температура, при которой начинается образование конденсата в воздухе с определённой температурой и относительной влажностью[2].

Точка росы определяется относительной влажностью воздуха. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

При значениях точки росы свыше 20 °C большинство людей чувствуют дискомфорт, воздух кажется душным; свыше 25 °C люди с болезнями сердца или дыхательных путей подвергаются опасности, — однако подобные значения наблюдаются крайне редко даже в тропических странах[3].

Формула для приблизительного расчёта точки росы Tp{\displaystyle T_{p}} в градусах Цельсия (только для положительных температур):

Tp=b γ(T,RH)a−γ(T,RH),{\displaystyle T_{p}={\frac {b\ \gamma (T,RH)}{a-\gamma (T,RH)}},}

где

a{\displaystyle a} = 17,27,
b{\displaystyle b} = 237,7 °C,
γ(T,RH)=a Tb+T+ln⁡RH{\displaystyle \gamma (T,RH)={\frac {a\ T}{b+T}}+\ln RH},
T{\displaystyle T} — температура в градусах Цельсия,
RH{\displaystyle RH} — относительная влажность в объёмных долях (0 < RH{\displaystyle RH} < 1,0).

Формула обладает погрешностью ±0,4 °C в следующем диапазоне значений:

0 °C < T{\displaystyle T} < 60 °C
0,01 < RH{\displaystyle RH} < 1,00
0 °C < Tp{\displaystyle T_{p}} < 50 °C

Существует более простая формула для приблизительного расчёта, дающая погрешность ±1,0 °C при относительной влажности в объёмных долях более 0,5:

Tp≈T−1−RH0,05.{\displaystyle T_{p}\approx T-{\frac {1-R\!H}{0,05}}.}

Эту формулу можно использовать для вычисления относительной влажности по известной точке росы:

RH≈1−0,05(T−Tp).{\displaystyle R\!H\approx 1-0,05(T-T_{p}).}

Точка росы воздуха — важнейший параметр при антикоррозионной защите, говорит о влажности и возможности конденсации.

Если точка росы воздуха выше, чем температура подложки(субстрат, как правило, поверхность металла), то на подложке будет иметь место конденсация влаги.

Краска, наносимая на подложку с конденсацией, не достигнет должной адгезии, за исключением случаев использования красок, разработанных по специальной рецептуре (справку можно получить в технологической карте продукта или покрасочной спецификации).

Таким образом, последствием нанесения краски на подложку с конденсацией будет плохая адгезия и образование дефектов, таких как шелушение, пузырение и др., приводящее к преждевременной коррозии и/или обрастанию.

Значения точки росы в °C для ряда ситуаций определяют с помощью пращевого психрометра и специальных таблиц. Сначала определяют температуру воздуха, затем влажность, температуру подложки и с помощью таблицы Точки росы определяют температуру, при которой не рекомендуется наносить покрытия на поверхность.

Если вы не можете найти точно ваши показания на пращевом психрометре, то найдите один показатель на одно деление выше по обеим шкалам, как относительной влажности, так и температуры, а другой показатель соответственно на одно деление ниже и интерполируйте необходимое значение между ними.

Стандарт ISO 8502-4 используется для определения относительной влажности и точки росы на стальной поверхности, подготовленной для окраски.

Таблица температур[править | править код]

Значения точки росы в градусах Цельсия в разных условиях приведены в таблице[4].

Относительная влажность, %Температура шарика сухого термометра, °C
02,557,51012,51517,52022,525
20−20−18−16−14−12−9,8−7,7−5,6−3,6−1,5−0,5
25−18−15−13−11−9,1−6,9−4,8−2,7−0,61,53,6
30−15−13−11−8,9−6,7−4,5−2,4−0,21,94,16,2
35−14−11−9,1−6,9−4,7−2,5−0,31,94,16,38,5
40−12−9,7−7,4−5,2−2,9−0,71,53,86,08,210,5
45−10−8,2−5,9−3,6−1,30,93,25,57,710,012,3
50−9,1−6,8−4,5−2,20,12,44,77,09,311,613,9
55−7,8−5,6−3,3−0,91,43,76,18,410,713,015,3
60−6,8−4,4−2,10,32,65,07,39,712,014,416,7
65−5,8−3,4−1,01,43,76,18,510,913,215,618,0
70−4,8−2,40,02,44,87,29,612,014,416,819,1
75−3,9−1,51,03,45,88,210,613,015,417,820,3
80−3,0−0,61,94,36,79,211,614,016,418,921,3
85−2,20,22,75,17,610,112,515,017,419,922,3
90−1,41,03,56,08,410,913,415,818,320,823,2
95−0,71,84,36,89,211,714,216,719,221,724,1
1000,02,55,0
7,5
10,012,515,017,520,022,525,0

Диапазон комфорта[править | править код]

Человек при высоких значениях точки росы чувствует себя некомфортно. В континентальном климате условия с точкой росы между 15 и 20 °C доставляют некоторый дискомфорт, а воздух с точкой росы выше 21 °C воспринимается как душный. Нижняя точка росы, менее 10 °C, коррелирует с более низкой температурой окружающей среды, и тело требует меньшего охлаждения[источник не указан 2877 дней].

Точка росы, °CВосприятие человекомОтносительная влажность (при 32 °C), %
более 26крайне высокое восприятие, смертельно опасно для больных астмой65 и выше
24—26крайне некомфортное состояние62
21—23очень влажно и некомфортно52—60
18—20неприятно воспринимается большинством людей44—52
16—17комфортно для большинства, но ощущается верхний предел влажности37—46
13—15комфортно38—41
10—12очень комфортно31—37
менее 10немного сухо для некоторых30

Наибольшая температура точки росы была 35°C и зафиксирована в Джаске (Иран) 20 июля 2012 года.

  1. ↑ РМГ 75-2004 «ГСИ. Измерения влажности веществ. Термины и определения» (С 01.08.2015 начинает действовать РМГ 75-2014)
  2. ↑ СП 50.13330.2012 «Тепловая защита зданий»
  3. John M. Wallace, Peter V. Hobbs. Water Vapor in Air // Atmospheric Sience. An introductory Survey.. — Second edition. — Washington: Academic Press Elsevier, 2006. — С. 83. — 551 с. — ISBN 978-0-12-732951-2.
  4. ↑ ИСО 8502-4 «Подготовка стальных поверхностей перед нанесением красок и связанных с ними продуктов. Испытания для оценки чистоты поверхности. Часть 4. Руководство по оценке вероятности конденсации перед нанесением краски»

ru.wikipedia.org

Определяем точку росы

  • От чего зависит точка росы?
  • Номограмма определения точки росы

Точка росы – это температура, при которой водяные пары из воздуха начинают конденсироваться на поверхностях. Случается так, что в отопительный сезон мы можем наблюдать конденсирование влаги на окнах и иногда стенах. В последнем случае конденсат может привести даже  к образованию плесени.

В этой статье мы попробуем разобрать такое понятие как «точка росы» и научимся определять температуру выпадения конденсата на поверхностях.

От чего зависит точка росы?

Принято считать, что для определения точки росы нужно знать две переменные:

  • Влажности воздуха в помещении
  • Температуры воздуха

Рассмотрим простой пример для понимания: воздух внутри помещения имеет температуру +20°C и при влажности воздуха 60% на поверхности с температурой ниже +12°C будет образовываться конденсат.

Благодаря номограмме ниже температуру точки росы можно будет определить более точно.

Номограмма определения точки росы

Чтобы рассчитать температуру точки росы   достаточно иметь дома точный спиртовой градусник и гигрометр. Последний бывает двух типов:

  • Гигрометр  обычный — показывает относительную влажность воздуха в процентах. Достаточно просто снять его показания.
  • Гигрометр психометрический — имеет два спиртовых термометра с ценой деления 0,1-0,5°C. Один термометр сухой, второй имеет устройство увлажнения.Для удобства определения относительной влажности воздуха в помещении используют психометрическую таблицу.

Измерив эти значения, далее на номограмме с помощью линейки прокладываем луч от шкалы температуры в помещении к известной влажности воздуха, в том месте, где луч пересечет шкалу  «Температура точки росы» и будет нужным  значением температуры поверхности для вашего случая.

Кликните по номограмме определения точки росы, чтобы увеличить ее до полного размера

Для определения уровня влажности в помещении полезно будет купить гигрометр.

umelyeruki.com

Как определить точку росы? Только проверенные способы!

Влажная трава под ногами, запотевшие окна, капельки на стенах сырого подвала – все это результат конденсации паров воды из атмосферного воздуха. Каждый с этим сталкивался, но не каждый интересовался, как определить точку росы. Чаще всего эту задачу приходится решать архитекторам, строителям и проектировщикам, а люди, далёкие от этой сферы, едва ли знакомы с таким понятием.

Как определить точку росыКак определить точку росы

Природа появления росы

Конденсация воды на различных поверхностях происходит следующим образом. Атмосферный воздух всегда в той или иной степени насыщен парами воды. Вода из газообразного состояния в жидкое переходит в случае понижения её температуры. Это происходит при соприкосновении атмосферного воздуха с более холодными поверхностями и последующей потере тепла. Как результат – появление капелек воды.

Утренняя роса легко объясняется законами физикиУтренняя роса легко объясняется законами физики

Температура, по достижению которой пары воды из воздуха переходят в жидкое агрегатное состояние, называется точкой росы.

Чем выше содержание паров воды в воздухе (или другой смеси газов), тем выше температура конденсации воды, или точка росы. Так, при относительной влажности воздуха 100% точка росы точно совпадает с его температурой. И наоборот: чем меньше показатель относительной влажности воздуха, тем ниже и точка росы. Значит, для выпадения конденсата придётся охладить воздух сильнее.

Изучаем точку росы в строительствеИзучаем точку росы в строительстве

Область применения понятия

Широко применяется этот термин в промышленном и гражданском строительстве. Необходимость определять эту величину возникает при утеплении стен помещения. Если пренебречь расчетом этого показателя, после работ по утеплению появятся проблемы. Один из вариантов – порча отделки стен за счёт оседающей влаги. Если же отделка терпима к воздействию воды, но капли конденсата будут выпадать на стенах, тоже ничего хорошего в этом нет. Влажная среда способствует развитию патогенных микроорганизмов, плесени.

В авиации также рассчитывается точка росы. Во время полёта на некоторых частях самолета выпадает конденсат. В таком случае конденсат замораживается и части самолета обледеневают.

Игнорирование точки росы может привести к крушению самолетаИгнорирование точки росы может привести к крушению самолета

Используют эту величину и в лесном хозяйстве. Специалисты по охране леса от пожаров используют точку росы для вычисления класса пожарной опасности, который характеризует возможность возгорания лесных массивов. На основании этого проектируются защитные мероприятия.

Точка росы применяется в расчетах для планирования противопожарных мероприятийТочка росы применяется в расчетах для планирования противопожарных мероприятий

В сельском хозяйстве, зная точку росы, определяют вероятность повреждения посевов неинфекционными болезнями (повреждениями, вызванными погодными условиями). При этом одна из задач селекции – вывести сорта культурных растений, способных конденсировать влагу из воздуха на своих вегетативных органах. Это позволит успешно заниматься сельским хозяйством в условиях малого выпадения осадков.

Размещение точки росыРазмещение точки росы

Как рассчитать точку росы

По математической формуле

Проведение расчётов вручную по формуле – довольно точный способ. Однако для использования формулы предварительно надо определить несколько других показателей. Выглядит формула следующим образом.

Формула для расчёта точки росыФормула для расчёта точки росы

Как видно из рисунка, a и b – постоянные величины. Т – температура воздуха. Rh – относительная влажность воздуха. Такой метод подсчёта даст результат с погрешностью в 0,5ºС.

С помощью онлайн-калькулятора

Поскольку расчёт с помощью формулы вручную подходит не всем (из-за недостаточных знаний в математике либо отсутствия времени), в сети Интернет в открытом доступе размещены онлайн-калькуляторы, которые рассчитывают точку росы на основании введённой информации. Пользоваться ими совершенно несложно: надо только ввести исходные данные (температура атмосферного воздуха и относительная влажность). Результат расчётов появится на экране.

Программы-калькуляторы

Увязать показатель точки росы и предполагаемые последствия неправильного утепления под силу не каждому. Для этого нужны специфические знания в физике и строительстве. Поэтому помимо обычных калькуляторов, рассчитывающих эту величину, созданы программы с расширенными возможностями. Они также находятся в свободном доступе и ими можно воспользоваться в режиме онлайн.

Такие программы при расчёте учитывают множество параметров:

  1. Населённый пункт, в котором построено (строится) здание. Тут же появляется статистика среднемесячных температур, относительной влажности, давления в этом регионе.
  2. Вид помещения. Очевидно, что влажность воздуха в ванной будет выше, чем в комнате, а это в свою очередь влияет на вид допустимого утеплителя.
  3. Тип конструкции. Здесь на выбор предлагается стена, перекрытие, чердачное перекрытие и другие позиции.
  4. Слои конструкции. Здесь принимается во внимание, что находится за утепляемой стеной – другое помещение либо улица.
  5. Материал перекрытия или стены.
  6. Температура и относительная влажность внутреннего и наружного воздуха.

После заполнения всех необходимых полей программа составит график точки росы.

Таблица определения точки росы

При необходимости быстро получить значение точки росы применяются таблицы. Данные таблиц весьма неточные и дают приблизительный результат. Зато пользоваться ими легко и быстро: достаточно только найти нужную ячейку на пересечении столбца и строки с нужной температурой и относительной влажностью воздуха.

Таблица 1. Определение точки росы по двум показателям.

Определение точки росы по двум показателямОпределение точки росы по двум показателям

Специальные инструменты

В метеорологии придуманы специальные инструменты, позволяющие определить точку росы. Однако даже для расчёта по математической формуле или любым другим методом, описанным выше, нужны свои инструменты.

Температура измеряется термометром, влажность – гигрометром. Для удобства в данном случае подойдёт инструмент, способный замерять и температуру, и влажность воздуха – цифровой термогигрометр.

Этот инструмент сочетает в себе функции градусника и гигрометраЭтот инструмент сочетает в себе функции градусника и гигрометра

Кроме того, существуют приборы, сочетающие в себе несколько функций: измерение температуры, влажности, расчёт точки росы и запоминание информации.

В большинстве случаев работа с таким прибором выглядит следующим образом.

  1. Включите прибор. Обратите внимание на заряд батареи.

    Так выглядит один из популярных приборовТак выглядит один из популярных приборов

  2. Поднесите наконечник сенсора к исследуемой поверхности под прямым углом.

    Правильное положение прибора обеспечит точность замеровПравильное положение прибора обеспечит точность замеров

  3. Чтобы зафиксировать данные замера, нажмите кнопку Hold в меню. Так Вы сможете ознакомиться с результатом в комфортном положении прибора.

    Зафиксировать – еще не значит сохранитьЗафиксировать – еще не значит сохранить

  4. Для сохранения данных нажмите кнопку Save.

    Возможность сохранения избавляет от необходимости записывать данные в блокнотВозможность сохранения избавляет от необходимости записывать данные в блокнот

  5. При необходимости перенести информацию на компьютер подключите прибор к сети через USB.

    Подключить измеритель точки росы к компьютеру не сложнее, чем мобильный телефонПодключить измеритель точки росы к компьютеру не сложнее, чем мобильный телефон

  6. Скопируйте данные на компьютер.

    Компьютер – надежное хранилище данныхКомпьютер – надежное хранилище данных

Работа с приборами для измерения точки росы проста даже для человека без специальной подготовки. Интерфейс интуитивно понятен, а при возникновении вопросов следует обратиться к инструкции.

Важность определения точки росы

Если не учитывать положение точки росы в стене, за этим последует ряд негативных событий.

Утеплительный материал быстро приходит в негодность, срок службы материала самой стены сокращается. Отделка из-за регулярного намокания держаться не будет: обои постепенно отклеиваются, штукатурка сыплется, краска шелушится. Из-за избыточной влажности в помещении за короткий срок на стенах, вентиляционных системах, потолке и других поверхностях развивается плесневый слой, грибок и другие патогенные микроорганизмы.

Игнорирование физической природы конденсации чревато антисанитарией в помещенииИгнорирование физической природы конденсации чревато антисанитарией в помещении

Как ведёт себя роса при неутеплённых стенах

При неутеплённых стенах есть несколько вариаций поведения точки росы. В некоторых ситуациях она располагается во внутреннем пространстве стены – ближе к улице либо ближе к комнате. Во втором случае при сильном понижении температуры место конденсации пара будет смещаться на внутреннюю поверхность стены. Тогда на её поверхности непременно образуются капли конденсата.

Неутеплённые стены часто намокаютНеутеплённые стены часто намокают

В некоторых случаях (холодный материал каркаса здания) точка росы может круглый год располагаться внутри помещения, то есть на внутренней поверхности стены. Тогда необходимо произвести прикладные расчеты и озаботиться утеплением стены с учетом климатических особенностей населенного пункта, в котором расположено здание.

В целом место нахождения точки росы в перекрытии или стене взаимосвязано с рядом физических факторов:

  • влажности наружного воздуха и воздуха внутри помещения;
  • температуры наружного воздуха и воздуха внутри помещения;
  • толщины перекрытия или стены.

Точка росы в утеплённых снаружи стенах

При корректном подборе материала и грамотно просчитанной толщине утеплительного слоя точка росы всегда будет находиться в утеплителе и никогда не будет сдвигаться в сторону внутренней поверхности. Стены сухие круглый год. Повреждается погодными условиями только утеплитель, износ стен замедляется.

Наружное утепление – верная защита от выпадения конденсата в квартиреНаружное утепление – верная защита от выпадения конденсата в квартире

В случае если толщина утеплителя меньше необходимой, либо не была учтена теплопроводность материала, точка росы будет вести себя так же, как и в неутеплённой стене, то есть влага будет продолжать скапливаться в помещении, если она скапливалась до утепления. Если это происходит, выход один – увеличить толщину утеплительного материала. Это можно сделать, добавив еще один слой термоизоляции либо заменив старый материал на новый, подходящий по толщине.

При избыточной толщине утеплительного слоя точка росы не будет выходить за его пределы на протяжении всего года. Никаких негативных последствий это за собой не повлечет: стена будет сухая круглый год. Однако расчеты для того и производятся, чтобы избежать необоснованных финансовых трат. Ведь если можно спастись от влаги и сохранить тепло меньшим количеством утеплителя, то зачем тратить больше?

Внутри или снаружи утеплять стеныВнутри или снаружи утеплять стены?

Точка росы в утеплённых изнутри стенах

Утепление стен только лишь с внутренней стороны неизбежно приводит к сдвигу точки росы в сторону помещения. Происходит это по причине того, что термоизоляционный материал удерживает тепло в комнате, тем самым делая стену более холодной. А, как известно, чем холоднее поверхность, тем вероятнее факт конденсации воздушной влаги на ней.

Если при нормальных для данного региона температурах точка росы располагается близко к внутренней поверхности стены и не доставляет неудобств, то в особо холодные дни она может смещаться в комнату, то есть на внутреннюю поверхность стены. Тогда стена будет намокать под утеплителем.

Если на неутеплённой стене влага скапливалась постоянно, то после проведения работ по внутреннему утеплению помещения весь холодный сезон стена будет продолжать намокать под утеплителем. Это приведёт к постепенной порче всех слоёв строительных материалов, расположенных на внутренней стороне стены, включая отделку.

Внутреннее утепление не спасает от намоканияВнутреннее утепление не спасает от намокания

В некоторых случаях после внутреннего утепления нормальной стены точка росы изменяет местоположение на утеплитель. Тогда в течение всей зимы будет мокрой не только стена, но и сам термоизоляционный материал.

Так или иначе, чтобы избежать порчи отделки и внутренних утеплительных слоёв, надо запомнить одно простое правило: утепление внутренней поверхности стены проводится только после наружного её утепления.

О точке росы в пластиковых окнах

Если речь заходит о точке росы в стеклопакетах, то многие представляют себе какое-то конкретное загадочное место. В действительности же точку росы увидеть нельзя, что мы с вами уже успели выяснить. Повторимся: под точкой росы подразумевается температура, при охлаждении до которой пар в воздухе насыщается и конденсируется. Существуют специальные таблицы, позволяющие рассчитать точку росы при относительной влажности и конкретной температуре. Одна из таких таблиц приведена ниже.

Точка росы при относительной влажности воздухаТочка росы при относительной влажности воздуха

На заметку! Допустим, влажность воздуха составляет 50%, а температура — +21 градус. При таких обстоятельствах точка росы составит +10,2. Что это значит? Если температура какой-то поверхности в квартире опустится до +10,2 градусов, то на ней (поверхности) начнет появляться конденсат. Как правило, самые холодные поверхности в квартире – это пластиковые окна, а потому именно на них в большинстве случаев выпадают излишки влаги.

Люди часто сталкиваются с выпадением конденсата на стеклопакетах. Если исходить из всего, сказанного выше, то можно сделать вывод, что с конденсатом можно бороться двумя способами – повышением температуры стекол и снижением влажности в квартире. Так, комфортной влажности можно добиться посредством обеспечения нормального воздухообмена. Вся лишняя влага – от стирки, кипящих кастрюль и проч. – должна покидать помещение, а не накапливаться в нем. В первую очередь, квартиру следует регулярно проветривать. Частота проветривания определяется в индивидуальном порядке, однако мы советуем делать это минимум по 10 минут дважды в день. Не стоит забывать и о специальных клапанах приточной вентиляции.

Видео — Что такое точка росы?

stroyday.ru

Temper-3D » Точка Росы

 

Английский термин Точки Росы — Dew point.

Точка Росы — это максимальная температура поверхности, на которую выпадает конденсат

Или так:

Если поверхность холоднее или равна точке росы, то конденсат на неё выпадет

Чем ниже влажность, тем точка росы ниже фактической температуры.
Чем выше влажность, тем точка росы выше и ближе к фактической температуре.
Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Например, в ванной комнате, если включен душ (влажность близка к 100%),  всегда зеркало «запотевает», и наоборот, если влажность равна нулю, то конденсат никогда не выпадет (в герметичном оконном стеклопакете влажность близка к 0%, там используется специальный адсорбент, который поглощает влагу, поэтому при любом охлаждении, он изнутри никогда не «запотеет»).

Если стеклопакет запотел изнутри, значит он не  герметичен и адсорбент уже не может поглотить всю влагу.

Таблица для определения точки росы

Как видно из таблицы, точка росы зависит от температуры и влажности.

В левой колонке указана температура, сверху — влажность.

Например, при температуре 20 °C и влажности 55% (санитарные нормы для жилых помещений) точка росы равна 10,69 °C. Если в квартире температура, например в углу ниже 10,69 °C, то угол «запотеет». Влажность 55% , это достаточно сухое помещение (реально в жилом помещении, особенно на кухне влажность составляет 60%-70%, и более т.е. стена «потечет» (обои отклеятся) при более высокой температуре).

Температуры точки росы, для различных значений температур и относительной влажности воздуха в помещении:

% влажность /

температура °C

40%45%50%55%60%65%70%75%80%85%90%95%
-5-15,3-14,04-12,9-11,84-10,83-9,96-9,11-8,31-7,62-6,89-6,24-5,6
-4-14,4-13,1-11,93-10,84-9,89-8,99-8,11-7,34-6,62-5,89-5,24-4,6
-3-13,42-12,16-10,98-9,91-8,95-7,99-7,16-6,37-5,62-4,9-4,24-3,6
-2-12,58-11,22-10,04-8,98-7,95-7,04-6,21-5,4-4,62-3,9-3,34-2,6
-1-11,61-10,28-9,1-7,98-7,0-6,09-5,21-4,43-3,66-2,94-2,34-1,6
0-10,65-9,34-8,16-7,05-6,06-5,14-4,26-3,46-2,7-1,96-1,34-0,62
1-9,85-8,52-7,32-6,22-5,21-4,26-3,4-2,58-1,82-1,08-0,410,31
2-9,07-7,72-6,52-5,39-4,38-3,44-2,56-1,74-0,97-0,240,521,29
3-8,22-6,88-5,66-4,53-3,52-2,57-1,69-0,88-0,080,741,522,29
4-7,45-6,07-4,84-3,74-2,7-1,75-0,87-0,010,871,722,53,26
5-6,66-5,26-4,03-2,91-1,87-0,92-0,010,941,832,683,494,26
6-5,81-4,45-3,22-2,08-1,04-0,080,941,892,83,684,485,25
7-5,01-3,64-2,39-1,25-0,210,871,92,853,774,665,476,25
8-4,21-2,83-1,56-0,42-0,721,822,863,854,775,646,467,24
9-3,41-2,02-0,780,461,662,773,824,815,746,627,458,24
10-2,62-1,220,081,392,63,724,785,777,717,68,449,23
11-1,83-0,420,981,323,544,685,746,747,688,589,4310,23
12-1,040,441,93,254,485,636,77,718,659,5610,4211,22
13-0,251,352,824,185,426,587,668,689,6210,5411,4112,21
140,632,263,765,116,367,538,629,6410,5911,5212,413,21
151,513,174,686,047,38,489,5810,611,5912,513,3814,21
162,414,085,66,978,249,4310,5411,5712,5613,4814,3615,2
173,314,996,527,99,1810,3711,512,5413,5314,4615,3616,19
184,25,97,448,8310,1211,3212,4613,5114,515,4416,3417,19
195,096,818,369,7611,0612,2713,4214,4815,4716,4217,3218,19
206,07,729,2810,6912,013,2214,3815,4416,4417,418,3219,18
216,98,6210,211,6212,9414,1715,3316,417,4118,3819,320,18
227,699,5211,1212,5613,8815,1216,2817,3718,3819,3620,321,6
238,6810,4312,0313,4814,8216,0717,2318,3419,3820,3421,2822,15
249,5711,3412,9414,4115,7617,0218,1919,320,3521,3222,2623,15
2510,4612,7513,8615,3416,717,9719,1520,2621,3222,323,2424,14
2611,3513,1514,7816,2717,6418,9520,1121,2222,2923,2824,2225,14
2712,2414,0515,717,1918,5719,8721,0622,1823,2624,2625,2226,13
2813,1314,9516,6118,1119,520,8122,0123,1424,2325,2426,227,12
2914,0215,8617,5219,0420,4421,7522,9624,1125,226,2227,228,12
3014,9216,7718,4419,9721,3822,6923,9225,0826,1727,228,1829,11
3115,8217,6819,3620,922,3223,6424,8826,0427,1428,0829,1630,1
3216,7118,5820,2721,8323,2624,5925,8327,028,1129,1630,1631,19
3317,619,4821,1822,7624,225,5426,7827,9729,0830,1431,1432,19
3418,4920,3822,123,6825,1426,4927,7428,9430,0531,1232,1233,08
3519,3821,2823,0224,626,0827,6428,729,9131,0232,133,1234,08
% влажность /

температура °C

40%45%50%55%60%65%70%75%80%85%90%95%

Оригинальный документ:
СП 23-101-2004, Группа Ж24, ОКС 91.120.01, Дата введения 2004-06-01, ПРИЛОЖЕНИЕ Р (справочное)

www.temper3d.ru

Влажность. Точка росы.

Вспомним основное, что мы знаем о влажности воздуха.

Так как на нашей планете очень много открытых водных поверхностей – моря, океаны, реки и озера, то безусловно, вода испаряется с этих огромных площадей и пар присутствует в воздухе абсолютно везде, даже в жаркой пустыне. Сколько этой самой воды в виде пара присутствует в одном кубическом метре воздуха – показывает абсолютная влажность, выражается она в г/м куб. Вы наверное заметили, что единицы измерения абсолютной влажности – такие же, как и у плотностей веществ. Действительно, абсолютная влажность – это и есть плотность водяного пара.

Абсолютная влажность   – это количество граммов водяного пара, содержащееся в кубическом метре воздуха при данных условиях

Испарение – это вылет молекул вещества с поверхности жидкости, и, как белые шахматы не могут без черных, так испарение не обходится без обратного процесса – конденсации. Часть молекул неизбежно возвращается обратно в жидкость. Если количество молекул, покидающих жидкость в единицу времени, равно количеству молекул, возвращающихся обратно – то пар называется насыщенным, то есть в пространстве над жидкостью не может уже находиться большее количество молекул. Понятно, что если температура высокая – то плотность такого насыщенного пара одна, а если низкая – то другая. Существует таблица, в которой указано, как изменяется давление и плотность насыщенного водяного пара  в зависимости от температуры.

Относительной влажностью называется отношение абсолютной влажности  к плотности насыщенного водяного пара  при той же температуре.

Относительную влажность выражают в процентах: . Плотность водяного пара по-другому – это количество молекул в данном объеме, то есть она непосредственно связана с концентрацией молекул. А от концентрации зависит давление пара . Поскольку мы рассматриваем все при одной и той же температуре, и нас не интересуют молекулы других газов, которые тоже присутствуют в воздухе, а только молекулы воды, можем записать относительную влажность как процентное отношение парциального давления пара  пара в воздухе к давлению насыщенного пара :

Парциальным называют давление водяного пара, которое он производил бы в отсутствие других газов в воздухе.

Что будет происходить с паром, если его охлаждать, как это происходит при наступлении летней ночи? Будем считать, что атмосферное давление этой ночью не меняется. Согласно уравнению  , при снижении температуры и постоянном давлении концентрация молекул n должна расти, то есть плотность пара будет увеличиваться, пока он не станет насыщенным.

Точкой росы называется такая температура, при которой насыщенный пар начинает конденсироваться (выпадает роса).

Точка росы зависит от относительной влажности воздуха: если воздух сухой, и пара в нем мало, то температура должна сильно понизиться, чтобы пар стал насыщенным, и затем начал конденсироваться. А если влажность высокая – то воздуху достаточно немного охладиться, чтобы пар достиг состояния насыщения и выпала бы роса. Если относительная влажность равна 100% – то мы находимся в точке росы, то есть текущая температура – это и есть точка росы.

Теперь подумаем, что будет, если изменять объем сосуда, в котором находится насыщенный пар – а именно, уменьшать. Будет ли расти плотность пара или нет? Как мы уже заметили, плотность водяного пара можно записать как число молекул в объеме сосуда. А если пар насыщенный, то в данном объеме не может содержаться большее число молекул. Поэтому, если объем сосуда уменьшить, “лишние” молекулы конденсируются, и плотность пара останется той же, что и была.

Ну а теперь применим эти знания, и попробуем решать задачи.

1. Давление водяного пара при температуре  было равно 1 кПа. Был ли этот пар насыщенным?

По таблице, которую можно найти на странице Справочник, определяем, что давление насыщенного пара при температуре  должно быть равно 1, 6 кПа. Давление нашего пара меньше, значит, он не насыщенный.

2. В закрытом сосуде емкостью 5 л находится ненасыщенный водяной пар массой 50 мг. При какой температуре пар будет насыщенным?

Найдем плотность водяного пара:  . Нам нужно найти плотность в , значит, перевести милиграммы в граммы, а литры – в . Тогда плотность . В таблице находим соответствующее такой плотности значение температуры – .

3. Во сколько раз концентрация молекул насыщенного водяного пара при  больше, чем при ?

По уравнению состояния идеального газа  . Выражаем концентрацию:  . Находим отношение концентраций: .  Давление насыщенного пара опять найдем по  таблице: при  это 12,33 кПа, а при – 0,87 кПа. Не забудем также перевести температуру в  в температуру по абсолютной шкале:  , . Теперь считаем: . Между прочим, плотность, как уже было сказано ранее, это количество молекул в единице объема, поэтому задачу можно было решить проще: найти отношение плотностей насыщенного пара при этих температурах: .

4. Парциальное давление водяного пара в воздухе при  было 1,1 кПа. Найти относительную влажность.

Для того, чтобы воспользоваться формулой , нам нужно знать давление насыщенного пара, а его можно определить по таблице, оно равно 2,2 кПа. Определяем влажность: 

Ответ: 50 %

5. Относительная влажность воздуха вечером при  равна 50%. Выпадет ли роса, если ночью температура понизится до ?

Нужно узнать, является ли температура  точкой росы, то есть будет ли пар насыщенным при такой температуре. Определить, будет ли пар насыщенным, можно по его плотности, а плотность найдем по формуле относительной влажности: , откуда . По уже знакомой нам таблице определяем, что при  плотность насыщенного пара равна 8,3 , что больше, чем найденная нами. Поэтому пар не будет насыщенным и роса не выпадет. А вот если бы температура опустилась бы до  и ниже, то роса выпала бы, так как при такой влажности   – точка росы.

6. В цилиндре под поршнем находится водяной пар массой 0,4 г при температуре 290 К. Этот пар занимает объем 40 л. Как можно сделать пар насыщенным?

Найдем плотность пара в сосуде:

. Теперь перейдем от абсолютной температуры к температуре в : .  В таблице находим соответствующее такой плотности значение температуры насыщенного пара – . То есть первый путь сделать наш пар насыщенным – это понизить его температуру на 6 градусов. Однако есть еще один путь: можно уменьшить объем. Действительно, плотность насыщенного пара при температуре  составляет 14,4 . Зная массу пара, найдем по плотности объем:  – то есть, если объем сосуда станет равным 27,7 л, то пар в нем будет насыщенным. Таким образом, второе решение – уменьшить объем сосуда на 12,3 л.

7. Сухой термометр психрометра показывает , а влажный . Относительная влажность, измеренная по волосному гигрометру, равна 30%. Правильны ли показания гигрометра?

Воспользуемся психрометрической таблицей , чтобы по показаниям сухого и влажного термометров определить относительную влажность. Сначала найдем разность показаний термометров: . Теперь по этой разности находим в таблице нужный столбец, и двигаемся по нему вниз до строки  – показаний сухого термометра. В ячейке на пересечении столбца и строки находим значение относительной влажности – 30%. Значит, волосяной гигрометр показывает верную влажность.

8. Дав­ле­ние пара в по­ме­ще­нии при тем­пе­ра­ту­ре  равно 756 Па. Дав­ле­ние на­сы­щен­но­го пара при этой же тем­пе­ра­ту­ре равно 880 Па. От­но­си­тель­ная влаж­ность воз­ду­ха равна (ответ округ­лить до целых)

1) 1%
2) 60%
3) 86%
4) 100%

Воспользуемся формулой : 

Ответ: 3.

9. От­но­си­тель­ная влаж­ность воз­ду­ха равна 42%, пар­ци­аль­ное дав­ле­ние пара при тем­пе­ра­ту­ре   рано 980 Па. Дав­ле­ние на­сы­щен­но­го пара при за­дан­ной тем­пе­ра­ту­ре равно (ответ округ­лить до целых)

1) 980 Па
2) 2333 Па
3) 1022 Па
4) 412 Па

Воспользуемся формулой , из которой выразим давление насыщенного пара:   Па

Ответ: 2.

10. В со­су­де с по­движ­ным порш­нем на­хо­дят­ся вода и её на­сы­щен­ный пар. Объём пара изо­тер­ми­че­ски умень­ши­ли в 2 раза. Кон­цен­тра­ция мо­ле­кул пара при этом

1) умень­ши­лась в 2 раза
2) не из­ме­ни­лась
3) уве­ли­чи­лась в 2 раза
4) уве­ли­чи­лась в 4 раза

Так как температура не менялась, то плотность пара при данной температуре неизменна, а значит, количество молекул в объеме одно и то же. То есть концентрация остается точно такой же, просто часть пара перейдет в жидкое состояние (конденсируется).

Ответ: 2.

11. От­но­си­тель­ная влаж­ность воз­ду­ха в ци­лин­дре под порш­нем равна 60%. Воз­дух изо­тер­ми­че­ски сжали, умень­шив его объём в два раза. От­но­си­тель­ная влаж­ность воз­ду­ха стала

1) 120 %
2) 100 %
3) 60 %
4) 30 %

Так как температура не менялась, то давление и плотность  насыщенного пара до сжатия и после одинаковы. При сжатии вдвое уменьшился объем, а масса водяного пара осталась прежней, значит, плотность пара вдвое увеличилась. С помощью формулы найдем отношение влажности до сжатия и после: , и . Однако же, плотность водяного пара не может превышать значения 100%: когда будет достигнуто это значение, начнется  конденсация, и плотность все равно будет равна 100%.

Ответ: 2.

12. Ка­ко­ва от­но­си­тель­ная влаж­ность воз­ду­ха при тем­пе­ра­ту­ре  , если точка росы ? Дав­ле­ние на­сы­щен­но­го во­дя­но­го пара при  равно 2,33 кПа, а при  – 1,4 кПа. Ответ вы­ра­зи­те в про­цен­тах и округ­ли­те до целых.

1) 60%
2) 50%
3) 40%
4) 75%

В точке росы относительная влажность равна 100%, поэтому, зная давление насыщенного пара, можем определить парциальное давление:

, ,  кПа.

Находим влажность воздуха:

Ответ: 1.

easy-physic.ru

Точка росы (температура точки росы)

Точка росы (температура точки росы).

 

 

Точка росы – значение температуры газа, при которой водяной пар, содержащийся в газе (например, в воздухе), охлаждаемом при постоянном давлении, становится насыщенным над плоской поверхностью воды.

 

Точка росы

Расчет температуры точки росы

Таблица расчета температуры точки росы

 

Точка росы:

Точка росы (температура точки росы газа) – значение температуры газа, при которой водяной пар, содержащийся в газе (например, в воздухе), охлаждаемом при постоянном давлении, становится насыщенным над плоской поверхностью воды.

Точка росы воздуха – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

Точка росы в строительстве – это температура, при которой начинается образование конденсата в воздухе с определённой температурой и относительной влажностью.

Точка росы зависит от относительной влажности воздуха и его температуры. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

 

Расчет температуры точки росы:

Рассчитать температуру точки росы  можно по формуле:

Tр = b · γ(T, Rh) / (a – γ (T, Rh),

где:

Tр – температура точки росы,

– γ (T, Rh) = a · T / (b+T) + ln(Rh),

– ln – натуральный логарифм,

а = 17,27,

b = 237,7,

Т – температура воздуха в °C,

Rh – относительная влажность, указанная в объемных долях (от 0,01 до 1,00).

Данная формула справедлива для следующих условий:

0 °C < T < 60 °C,

0,01 < Rh < 1,00,

0 °C <  Tр < 50 °C.

Иными словами, данная формула применяется только для положительных температур в диапазоне от 0 °C до 60 °C. Ее погрешность составляет ±0,4 °C.

Температуру точки росы можно рассчитать и по более простой формуле:

Tр ≈ T – (1 – Rh)/0,05,

где:

Т – температура воздуха в °C,

Rh – относительная влажность, указанная в объемных долях (от 0,01 до 1,00).

Данная формула справедлива для следующих условий: Rh > 0,5. Ее погрешность составляет ±1,0 °C.

 

Таблица расчета температуры точки росы:

Определение температуры точки росы в зависимости от температуры и относительной влажности.

Так, при температуре 20 °C и относительной влажности 55 % температура точки росы составит 9,3 °C.

Температура
воздуха, °C
Относительная влажность, %
3035404550556065707580859095
3010,512,914,916,818,42021,422,723,925,126,227,228,229,1
299,7121415,917,51920,421,72324,125,226,227,228,1
288,811,113,11516,618,119,520,82223,224,225,226,227,1
27810,212,214,115,717,218,619,921,122,223,324,325,226,1
267,19,411,413,214,816,317,618,920,121,222,323,324,225,1
256,28,510,512,213,915,316,71819,120,321,322,323,224,1
245,47,69,611,312,914,415,81718,219,320,321,322,323,1
234,56,78,710,41213,514,816,117,218,319,420,321,322,2
223,65,97,89,511,112,513,915,116,317,418,419,420,321,1
212,856,98,610,211,612,914,215,316,417,418,419,320,2
201,94,167,79,310,71213,214,415,416,417,418,319,2
1913,25,16,88,39,811,112,313,414,515,516,417,318,2
180,22,34,25,97,48,810,111,312,513,514,515,416,317,2
17-0,61,43,356,57,99,210,411,512,513,514,515,316,2
16-1,40,52,44,15,678,29,410,511,612,613,514,415,2
15-2,2-0,31,53,24,76,17,38,59,610,611,612,513,414,2
14-2,9-10,62,33,75,16,47,58,69,610,611,512,413,2
13-3,7-1,9-0,11,32,84,25,56,67,78,79,610,511,412,2
12-4,5-2,6-10,41,93,24,55,76,77,78,79,610,411,2
11-5,2-3,4-1,8-0,412,33,54,75,86,77,78,69,410,2
10-6-4,2-2,6-1,20,11,42,63,74,85,86,77,68,49,2

 

Примечание:

* для промежуточных показателей, не указанных в таблице, определяется средняя величина.

 

Источник: https://ru.wikipedia.org/wiki/Точка_росы

Примечание: © Фото //www.pexels.com, //pixabay.com

 

карта сайта

 

Коэффициент востребованности 242

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Зависимость точки росы от давления

Точка росы под давлением [°Cтрд] — это температура, до которой сжатый воздух может быть охлажден без образования конденсата. Точка росы зависит от давления процесса. Когда давление падает, точка росы также снижается.

Говоря о системах под давлением, мы имеем в виду точку росы под давлением, но не атмосферную точку росы. Описание различий между этими двумя физическими параметрами приводится ниже.

2. Атмосферная точка росы [°CtdA]

Атмосферная точка росы [°CтрА] – температура, до которой атмосферный воздух (воздух под давлением приблиз. 1 бар абс.) может быть охлажден без образования конденсата.

2.1 Разница между точкой росы под давлением и атмосферной точкой росы

Точка росы под давлением или атмосферная точка росы? Атмосферный воздух способен удерживать больше паров воды нежели сжатый воздух. По мере охлаждения сжатый воздух достигает точки росы при более высоком значении температуры (“точка росы” в °Cтр или °Fтр), в то время как атмосферный воздух может быть подвержен дальнейшему охлаждению до момента образования конденсата (атмосферная точка росы, в °Cтр или °Fтр).

Для мониторинга систем сжатого воздуха важным является значение точки росы под давлением, поскольку она является индикатором удаленности от “опасного порога“ (= точки росы). Тем не менее, некоторым пользователям требуются данные с указанием непосредственно атмосферной точки росы – testo 6740 предоставляет возможность выбора выходного параметра, т.е. пользователь может выбрать точку росы под давлением или же атмосферную точку росы (для последней через меню управления вводится значение давления процесса).

Рассмотрим куб с 1 м 3 воздуха при температуре 20 °C и 20 % относительной влажности. Эти условия соответствуют содержанию в нем 3 граммов водяного пара, при том воздух может содержать максимум 15 г/м 3 при 20 °C (насыщение влажностью в зависимости от температуры).

В случае А (атмосферная точка росы):

Давление остается постоянным (1 бар), куб охлаждается до температуры точки росы. 3 г водяного пара также может содержаться в 1 м 3 T, как и при первоначальной температуре, с охлаждением же снижается способность воздуха содержать влагу. При. -3.2 °C, только 3 г водяного пара может быть в воздухе.

Куб воздуха достигает точки росы и начинает выделять конденсат. Эта точка росы носит название атмосферной (-3.2 °Cтр), поскольку процесс происходит при атмосферном давлении.

В случае В: (точка росы под давлением):

Давление поднимается до 3 бар, вызывая уменьшение объема куба до 1/3 от его изначального размера. Даже после сжатия воздушный куб сохраняет массу водяного пара в 3 г (влага не была добавлена или извлечена), при этом значение абсолютной влажности теперь: 3 г/(1/3м 3 ) = 9 г/м 3 .

Поскольку температура до сих пор 20 °C и насыщение (максимально возможное содержание влаги) зависит только от температуры, 15 г/м 3 водяного пара могут находиться в воздушном кубе. Таким образом, относительная влажность 9/15 = 60%ОВ, т.е. изменение давления с 1 бара на 3 привело к повышению относительной влажности в 3 раза.

Если охладить сжатый куб воздуха, то он достигнет точки росы уже при 12 °Ctd, при которых воздух достигает своего насыщения (9 г/м 3 = макс. возможное содержание влаги).

Это явно указывает на то, что повышение давления поднимает температуру точки росы. Таким образом, при постоянной температуре процесса удаленность от критического значения (температурная дистанция до точки росы) становится меньше!

2.2 Преобразование точки росы под давлением в атмосферную точку росы

2.3 Точка росы и относительная влажность

Точка росы сжатого воздуха – это температура, при которой вода конденсируется из сжатого воздуха. Она зависит от относительной влажности и температуры процесса (см. диаграмму ниже). Чем ниже относительная влажность, тем меньше точка росы (при постоянном давлении и температуре процесса).

Как показывает диаграмма, переменная влажности “точка росы” обеспечивает в значительной степени большую разрешающую способность, чем относительная влажность в диапазоне низкой влажности ( 3 (25 °C), что соответствует 100% относительной влажности.

Увеличение давления не влияет на атмосферную точку росы. Изменяется только точка росы под давлением.

Пример: воздух с атмосферной точкой росы 0 °Cтр сжимается с 1 до 3 бар. Это утраивает значение абсолютной влажности с 4440 мг/м 3 (1) до 13320 мг/м 3 (2).

Соотношение атмосферной точки росы и абсолютной влажности при температуре процесса 25 °C

3. Психрометрическая диаграмма (диаграмма Молье) для систем под давлением

Традиционные психрометрические диаграммы верны только при одном уровне давления, обычно при атмосферном давлении (применение в области технологий кондиционирования воздуха, см. “Стационарные технологии для измерения влажности, дифференциального давления и температуры”).

Психрометрическая диаграмма ниже показывает соотношение разных переменных влажности (точка росы [°Cтр],относительная влажность [%ОВ] и степень влажности [г/кг] также, как и температура [°C] ) в том числе при неатмосферном давлении.

4. Вычисление точки росы [°Cтр]

Разница в подсчете точки росы/точки образования инея

Если температура точки росы выше 0 °Cтр, задается температура точки росы; в случае же, если она ниже 0 °Cтр, задается температура точки образования инея.

Для температур точки росы, значения, полученные с помощью testo 6740 и зеркала точки росы, совпадают при соблюдении погрешности измерений.

В редких случаях различия между testo 6740 и зеркалом точки росы могут иметь место в температурах точки образования инея между -35 °C и 0 °C. Это происходит, когда (при температурах 3 ]

Абсолютная влажность [г/м 3 ] указывает на фактическое количество граммов воды в одном кубическом метре сухого воздуха или сухого газа.

Поскольку при измерениях в диапазоне остаточной влажности мы имеем дело с очень небольшими значениями абсолютной влажности, testo 6740 показывает абсолютную влажность в мг/м 3 .

7. Зависимость параметров влажности от давления

Сенсор влажности testo измеряет относительную влажность %ОВ напрямую (без необходимости в “знании”/введении значения давления). Поскольку этот параметр зависит от давления, все зависящие от давления параметры (°Cтр, г/м 3 ,%ОВ) также подсчитываются без ввода данных о давлении. Для параметров влажности, не зависящих от давления (ppm, °Ctd = температура атмосферной точки росы), тем не менее, необходимо выполнять корректировку давления путем ввода абсолютного давления (через меню управления/градуировочный адаптер) (см. изображение).

8. Реакция параметров влажности на изменение давления и/или температуры

В таблице ниже приведены сведения о реакции параметров влажности при изменении давления и/или температуры. Атмосферная точка росы и влагосодержание не зависят от давления и температуры.

Точка росы сжатого воздуха.

Aтмocфepный вoздуx вceгдa coдeржит oпpeдeлeннoе кoличecтвo вoдянoгo пapа. Мaкcимaльнoe coдepжaниe влaги зaвиcит oт тeмпeрaтуpы вoздуxa и oт дaвлeния. Пpи пoнижeнии тeмпepaтуpы вoздуxa eгo cпocoбноcть удepживaть влaгу cнижaeтcя. Coдepжaниe влaги в вoздуxe oпиcывaeт тoчкa рocы. Кoтoрaя пoкaзываeт, пpи кaкoй тeмпepатуpe coдepжaщaяcя в вoздуxe влaгa будeт cooтвeтcтвoвaть 100% влaжнocти, a тaкжe пpи кaкoй тeмпeрaтурe нaчинaeт выпaдaть кoндeнcaт.

Рaзличaют тoчку pocы (DР) и тoчку pocы пoд дaвлeниeм (РDР).

– тoчкa poсы для aтмocфeрнoгo вoздуxa

РDР (Рrеssurе dеwpоint) – тoчкa рocы пoд дaвлeниeм для cжaтoгo вoздуxa

Тoчкa poсы (DР): пoкaзывaeт тeмпepaтуpу, пpи кoтopoй aтмocфepный вoздуx нa 100% нacыщeн влaгoй. Еcли тeмпepaтурa вoздуxa пoнижaeтcя дo дaннoгo знaчeния, тo пap, coдepжaщийcя в вoздуxe, пpeвpaщaeтcя в кoндeнcaт.

Тoчкa pocы пoд дaвлeниeм (РDР): тeмпepaтурa, пpи кoтopoй cжaтый вoздуx (дaвлeниe бoлee 1 aтм) нacыщeн вoдянoй влaгoй нa 100%. Еcли тeмпeрaтуpe cжaтoгo вoздуxa пoнижaeтcя нижe знaчeния тoчки рocы, тo вoдянoй пaр будeт кoндeнcирoвaтьcя.

Тaблицa 1: Тeмпeрaтуpa тoчки pocы и влaгocoдeржaниe cжaтoгo вoздуxa.

Тoчкa рocы, °C

Сoдeржaниe влaги, г/м3

Тoчкa poсы, °C

Coдeржaниe влaги, г/м3

Тoчкa pocы, °C

Coдepжaниe влaги, г/м3

Содержание влаги, г/м3

Coдepжaниe влaги, г/м3

Coдepжaниe влaги, г/м3

Тoчкa pocы, °C

Изменение агрегатных состояний вещества

Воздух всегда содержит водяной пар. Чем больше водяного пара в воздухе, тем ближе он к насыщению. Но чем выше температура, тем больше водяного пара требуется для насыщения воздуха. Согласно уравнению состояния идеального газа, давление пропорционально плотности и температуре газа (водяного пара).

Следовательно, чем выше температура воздуха, тем больше может быть давление водяного пара в нем. С другой стороны, при постоянной температуре влажность воздуха можно характеризовать как давлением, так и плотностью.

Если сосуд с небольшим количеством воды закрыть крышкой и оставить на достаточно продолжительное время, то вода будет испаряться и пар станет насыщенным (считаем, что воды для этого хватит).

Насыщенный пар – это пар, находящийся в динамическом равновесии со своей жидкостью. Динамическое равновесие – это когда примерно одинаковое количество молекул покидает жидкость при испарении и возвращается в нее при конденсации. Оба процесса происходят одновременно.

Испарение – процесс парообразования, происходящий с поверхности жидкости. Скорость испарения зависит от температуры, давления, рода жидкости, площади поверхности и наличия ветра.

Кипение – процесс парообразования, происходящий по всему объему жидкости. Характеризуется определенной температурой кипения, которая зависит от рода жидкости и внешнего давления.

Зависимость температуры кипения от давления

Характеристики влажности

Абсолютная влажность (упругость) воздуха – плотность водяного пара в воздухе, ρ, кг/м 3 .

Относительная влажность – отношение парциального давления водяного пара к давлению насыщенного пара при той же температуре.

Парциальное давление водяного пара – давление, которое производил бы водяной пар, если бы остальные газы отсутствовали.

Атмосфера состоит из различных газов, каждый из которых вносит свой вклад в атмосферное давление.

Чем меньше относительная влажность, тем интенсивнее происходит испарение. Давление насыщенного пара при заданной температуре можно определить по справочной таблице. Температура, при которой водяной пар заданного давления становится насыщенным, называется точкой росы .

Если водяной пар охлаждать изобарически, то пар становится насыщенным, и его состояние будет соответствовать точке росы на диаграмме pT .

При охлаждении ниже точки росы начинается конденсация пара: запотевание, выпадение росы, появление тумана. Точка росы позволяет определить абсолютную влажность при заданной температуре.

Приборы для определения влажности воздуха

В качестве детали, чувствительной к изменению влажности, служит обезжиренный человеческий волос. Он закреплен в верхней части прибора, обернут вокруг ролика и натянут при помощи специально подобранного груза. К ролику прикреплена стрелка. При увеличении относительной влажности воздуха волос удлиняется и вызывает вращение ролика вместе со стрелкой. Передвигаясь по шкале, она и указывает значение влажности воздуха, выраженное в процентах.

Конденсационный гигрометр представляет собой металлическую коробку, передняя стенка которой хорошо отполирована. Внутрь коробки наливают легко испаряющуюся жидкость — эфир — и вставляют термометр. Пропуская через коробку воздух с помощью резиновой груши, вызывают сильное испарение эфира и быстрое охлаждение коробки. По термометру замечают температуру, при которой появляются капельки росы на полированной поверхности стенки. Давление в области, прилегающей к стенке, можно считать постоянным, так как эта область сообщается с атмосферой и понижение давления за счет охлаждения компенсируется увеличением концентрации пара. Появление росы указывает, что водяной пар стал насыщенным. Зная температуру воздуха и точку росы, можно найти парциальное давление водяного пара и относительную влажность.

Психрометр Августа имеет два термометра: «сухой» и «влажный». Они так называются потому, что конец одного из термометров находится в воздухе, а конец второго обвязан кусочком марли, погруженным в воду. Испарение воды с поверхности влажного термометра приводит к понижению его температуры. Второй же, сухой термометр, показывает обычную температуру воздуха. Измеренные психрометром значения температур можно перевести в значение относительной влажности воздуха по специальной таблице.

Фазовая диаграмма воды — графическое отображение равновесного состояния фаз воды (жидкости, водяного пара и различных модификаций льда). Строится в системе координат температура — давление.

Тройная точка воды — строго определённые значения температуры и давления, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом, жидком и газообразном состояниях. Тройная точка воды — температура 273,16 К (0,01 °C) и давление 611,657 Па.

При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку . В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении и/или температуре исчезает разница между жидкой водой и водяным паром. Такое агрегатное состояние называют «сверхкритическая жидкость».

Вода может находиться в метастабильных состояниях — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, можно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.

Кривая сублимации льда начинается в точке (0 Па; 0 K) и заканчивается в тройной точке воды (611,657 Па; 273,16 K).

iobogrev.ru

Добавить комментарий